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introduction

Computer technology has made incredible progress in the roughly 60 years since
the first general-purpose electronic computer was created. Today, less than $500
will purchase a personal computer that has more performance, more main mem-
ory, and more disk storage than a computer bought in 1985 for 1 million dollars.
This rapid improvement has come both from advances in the technology used to
build computers and from innovation in computer design.

Although technological improvements have been fairly steady, progress aris-
ing from better computer architectures has been much less consistent. During the
first 25 years of electronic computers, both forces made a major contribution,
delivering performance improvement of about 25% per year. The late 1970s saw
the emergence of the microprocessor. The ability of the microprocessor to ride
the improvements in integrated circuit technology led to a higher rate of improve-
ment—roughly 35% growth per year in performance.

This growth rate, combined with the cost advantages of a mass-produced
microprocessor, led to an increasing fraction of the computer business being
based on microprocessors. In addition, two significant changes in the computer
marketplace made it easier than ever before to be commercially successful with a
new architecture. First, the virtual elimination of assembly language program-
ming reduced the need for object-code compatibility. Second, the creation of
standardized, vendor-independent operating systems, such as UNIX and its
clone, Linux, lowered the cost and risk of bringing out a new architecture.

These changes made it possible to develop successfully a new set of architec-
tures with simpler instructions, called RISC (Reduced Instruction Set Computer)
architectures, in the early 1980s. The RISC-based machines focused the attention
of designers on two critical performance techniques, the exploitation of instruction-
level parallelism (initially through pipelining and later through multiple instruction
issue) and the use of caches (initially in simple forms and later using more sophisti-
cated organizations and optimizations).

The RISC-based computers raised the performance bar, forcing prior archi-
tectures to keep up or disappear. The Digital Equipment Vax could not, and so it
was replaced by a RISC architecture. Intel rose to the challenge, primarily by
translating x86 (or IA-32) instructions into RISC-like instructions internally,
allowing it to adopt many of the innovations first pioneered in the RISC designs.
As transistor counts soared in the late 1990s, the hardware overhead of translat-
ing the more complex x86 architecture became negligible.

Figure 1.1 shows that the combination of architectural and organizational
enhancements led to 16 years of sustained growth in performance at an annual
rate of over 50%—a rate that is unprecedented in the computer industry.

The effect of this dramatic growth rate in the 20th century has been twofold.
First, it has significantly enhanced the capability available to computer users. For
many applications, the highest-performance microprocessors of today outper-
form the supercomputer of less than 10 years ago.
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Figure 1.1 Growth in processor performance since the mid-1980s. This chart plots performance relative to the
VAX 11/780 as measured by the SPECint benchmarks (see Section 1.8). Prior to the mid-1980s, processor perfor-
mance growth was largely technology driven and averaged about 25% per year. The increase in growth to about
52% since then is attributable to more advanced architectural and organizational ideas. By 2002, this growth led to a
difference in performance of about a factor of seven. Performance for floating-point-oriented calculations has
increased even faster. Since 2002, the limits of power, available instruction-level parallelism, and long memory
latency have slowed uniprocessor performance recently, to about 20% per year. Since SPEC has changed over the
years, performance of newer machines is estimated by a scaling factor that relates the performance for two different
versions of SPEC (e.g., SPEC92, SPEC95, and SPEC2000).

Second, this dramatic rate of improvement has led to the dominance of
microprocessor-based computers across the entire range of the computer design.
PCs and Workstations have emerged as major products in the computer industry.
Minicomputers, which were traditionally made from off-the-shelf logic or from
gate arrays, have been replaced by servers made using microprocessors. Main-
frames have been almost replaced with multiprocessors consisting of small num-
bers of off-the-shelf microprocessors. Even high-end supercomputers are being
built with collections of microprocessors.

These innovations led to a renaissance in computer design, which emphasized
both architectural innovation and efficient use of technology improvements. This
rate of growth has compounded so that by 2002, high-performance microproces-
sors are about seven times faster than what would have been obtained by relying
solely on technology, including improved circuit design.
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However, Figure 1.1 also shows that this 16-year renaissance is over. Since
2002, processor performance improvement has dropped to about 20% per year
due to the triple hurdles of maximum power dissipation of air-cooled chips, little
instruction-level parallelism left to exploit efficiently, and almost unchanged
memory latency. Indeed, in 2004 Intel canceled its high-performance uniproces-
sor projects and joined IBM and Sun in declaring that the road to higher perfor-
mance would be via multiple processors per chip rather than via faster
uniprocessors. This signals a historic switch from relying solely on instruction-
level parallelism (ILP), the primary focus of the first three editions of this book,
to thread-level parallelism (TLP) and data-level parallelism (DLP), which are
featured in this edition. Whereas the compiler and hardware conspire to exploit
ILP implicitly without the programmer’s attention, TLP and DLP are explicitly
parallel, requiring the programmer to write parallel code to gain performance.

This text is about the architectural ideas and accompanying compiler
improvements that made the incredible growth rate possible in the last century,
the reasons for the dramatic change, and the challenges and initial promising
approaches to architectural ideas and compilers for the 21st century. At the core
is a quantitative approach to computer design and analysis that uses empirical
observations of programs, experimentation, and simulation as its tools. It is this
style and approach to computer design that is reflected in this text. This book was
written not only to explain this design style, but also to stimulate you to contrib-
ute to this progress. We believe the approach will work for explicitly parallel
computers of the future just as it worked for the implicitly parallel computers of
the past.

Classes of Computers

In the 1960s, the dominant form of computing was on large mainframes—com-
puters costing millions of dollars and stored in computer rooms with multiple
operators overseeing their support. Typical applications included business data
processing and large-scale scientific computing. The 1970s saw the birth of the
minicomputer, a smaller-sized computer initially focused on applications in sci-
entific laboratories, but rapidly branching out with the popularity of time-
sharing—multiple users sharing a computer interactively through independent
terminals. That decade also saw the emergence of supercomputers, which were
high-performance computers for scientific computing. Although few in number,
they were important historically because they pioneered innovations that later
trickled down to less expensive computer classes. The 1980s saw the rise of the
desktop computer based on microprocessors, in the form of both personal com-
puters and workstations. The individually owned desktop computer replaced
time-sharing and led to the rise of servers—computers that provided larger-scale
services such as reliable, long-term file storage and access, larger memory, and
more computing power. The 1990s saw the emergence of the Internet and the
World Wide Web, the first successful handheld computing devices (personal digi-
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Feature Desktop Server Embedded
Price of system $500-$5000 $5000-$5,000,000 $10-$100,000 (including network
routers at the high end)
Price of microprocessor $50-$500 $200-$10,000 $0.01-$100 (per processor)
module (per processor) (per processor)
Critical system design issues  Price-performance, Throughput, availability, Price, power consumption,
graphics performance  scalability application-specific performance

Figure 1.2 A summary of the three mainstream computing classes and their system characteristics. Note the
wide range in system price for servers and embedded systems. For servers, this range arises from the need for very
large-scale multiprocessor systems for high-end transaction processing and Web server applications.The total num-
ber of embedded processors sold in 2005 is estimated to exceed 3 billion if you include 8-bit and 16-bit microproces-
sors. Perhaps 200 million desktop computers and 10 million servers were sold in 2005.

tal assistants or PDAs), and the emergence of high-performance digital consumer
electronics, from video games to set-top boxes. The extraordinary popularity of
cell phones has been obvious since 2000, with rapid improvements in functions
and sales that far exceed those of the PC. These more recent applications use
embedded computers, where computers are lodged in other devices and their
presence is not immediately obvious.

These changes have set the stage for a dramatic change in how we view com-
puting, computing applications, and the computer markets in this new century.
Not since the creation of the personal computer more than 20 years ago have we
seen such dramatic changes in the way computers appear and in how they are
used. These changes in computer use have led to three different computing mat-
kets, each characterized by different applications, requirements, and computing
technologies. Figure 1.2 summarizes these mainstream classes of computing
environments and their important characteristics.

Desktop Computing

The first, and still the largest market in dollar terms, is desktop computing. Desk-
top computing spans from low-end systems that sell for under $500 to high-end,
heavily configured workstations that may sell for $5000. Throughout this range
in price and capability, the desktop market tends to be driven to optimize price-
performance. This combination of performance (measured primarily in terms of
compute performance and graphics performance) and price of a system is what
matters most to customers in this market, and hence to computer designers. As a
result, the newest, highest-performance microprocessors and cost-reduced micro-
processors often appear first in desktop systems (see Section 1.6 for a discussion
of the issues affecting the cost of computers).

Desktop computing also tends to be reasonably well characterized in terms of
applications and benchmarking, though the increasing use of Web-centric, inter-
active applications poses new challenges in performance evaluation.
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Servers

As the shift to desktop computing occurred, the role of servers grew to provide
larger-scale and more reliable file and computing services. The World Wide Web
accelerated this trend because of the tremendous growth in the demand and
sophistication of Web-based services. Such servers have become the backbone of
large-scale enterprise computing, replacing the traditional mainframe.

For servers, different characteristics are important. First, dependability is crit-
ical. (We discuss dependability in Section 1.7.) Consider the servers running
Google, taking orders for Cisco, or running auctions on eBay. Failure of such
server systems is far more catastrophic than failure of a single desktop, since
these servers must operate seven days a week, 24 hours a day. Figure 1.3 esti-
mates revenue costs of downtime as of 2000. To bring costs up-to-date, Ama-
zon.com had $2.98 billion in sales in the fall quarter of 2005. As there were about
2200 hours in that quarter, the average revenue per hour was $1.35 million. Dur-
ing a peak hour for Christmas shopping, the potential loss would be many times
higher.

Hence, the estimated costs of an unavailable system are high, yet Figure 1.3
and the Amazon numbers are purely lost revenue and do not account for lost
employee productivity or the cost of unhappy customers.

A second key feature of server systems is scalability. Server systems often
grow in response to an increasing demand for the services they support or an
increase in functional requirements. Thus, the ability to scale up the computing
capacity, the memory, the storage, and the I/O bandwidth of a server is crucial.

Lastly, servers are designed for efficient throughput. That is, the overall per-
formance of the server—in terms of transactions per minute or Web pages served

Annual losses (millions of $) with downtime of

Cost of downtime per 1% 0.5% 0.1%
Application hour (thousands of $) (87.6 hrs/yr) (43.8 hrs/yr) (8.8 hrs/yr)
Brokerage operations $6450 $565 $283 $56.5
Credit card authorization $2600 $228 $114 $22.8
Package shipping services $150 $13 $6.6 $1.3
Home shopping channel $113 $9.9 $4.9 $1.0
Catalog sales center $90 $7.9 $3.9 $0.8
Airline reservation center $89 $7.9 $3.9 $0.8
Cellular service activation $41 $3.6 $1.8 $0.4
Online network fees $25 $2.2 $1.1 $0.2
ATM service fees $14 $1.2 $0.6 $0.1

Figure 1.3 The cost of an unavailable system is shown by analyzing the cost of downtime (in terms of immedi-
ately lost revenue), assuming three different levels of availability, and that downtime is distributed uniformly.
These data are from Kembel [2000] and were collected and analyzed by Contingency Planning Research.
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per second—is what is crucial. Responsiveness to an individual request remains
important, but overall efficiency and cost-effectiveness, as determined by how
many requests can be handled in a unit time, are the key metrics for most servers.
We return to the issue of assessing performance for different types of computing
environments in Section 1.8.

A related category is supercomputers. They are the most expensive comput-
ers, costing tens of millions of dollars, and they emphasize floating-point perfor-
mance. Clusters of desktop computers, which are discussed in Appendix H, have
largely overtaken this class of computer. As clusters grow in popularity, the num-
ber of conventional supercomputers is shrinking, as are the number of companies
who make them.

Embedded Computers

Embedded computers are the fastest growing portion of the computer market.
These devices range from everyday machines—most microwaves, most washing
machines, most printers, most networking switches, and all cars contain simple
embedded microprocessors—to handheld digital devices, such as cell phones and
smart cards, to video games and digital set-top boxes.

Embedded computers have the widest spread of processing power and cost.
They include 8-bit and 16-bit processors that may cost less than a dime, 32-bit
microprocessors that execute 100 million instructions per second and cost under
$5, and high-end processors for the newest video games or network switches that
cost $100 and can execute a billion instructions per second. Although the range
of computing power in the embedded computing market is very large, price is a
key factor in the design of computers for this space. Performance requirements
do exist. of course. but the primary goal is often meeting the performance need at
a minimum price, rather than achieving higher performance at a higher price.

Often, the performance requirement in an embedded application is real-time
execution. A real-time performance requirement is when a segment of the appli-
cation has an absolute maximum execution time. For example, in a digital set-top
box, the time to process each video frame is limited, since the processor must
accept and process the next frame shortly. In some applications, a more nuanced
requirement exists: the average time for a particular task is constrained as well as
the number of instances when some maximum time is exceeded. Such
approaches—sometimes called soft real-time—arise when it is possible to occa-
sionally miss the time constraint on an event, as long as not too many are missed.
Real-time performance tends to be highly application dependent.

Two other key characteristics exist in many embedded applications: the need
to minimize memory and the need to minimize power. In many embedded appli-
cations, the memory can be a substantial portion of the system cost, and it is
important to optimize memory size in such cases. Sometimes the application is
expected to fit totally in the memory on the processor chip; other times the
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application needs to fit totally in a small off-chip memory. In any event, the
importance of memory size translates to an emphasis on code size, since data size
is dictated by the application.

Larger memories also mean more power, and optimizing power is often criti-
cal in embedded applications. Although the emphasis on low power is frequently
driven by the use of batteries, the need to use less expensive packaging—plastic
versus ceramic—and the absence of a fan for cooling also limit total power con-
sumption. We examine the issue of power in more detail in Section 1.5.

Most of this book applies to the design, use, and performance of embedded
processors, whether they are off-the-shelf microprocessors or microprocessor
cores, which will be assembled with other special-purpose hardware.

Indeed, the third edition of this book included examples from embedded
computing to illustrate the ideas in every chapter. Alas, most readers found these
examples unsatisfactory, as the data that drives the quantitative design and evalu-
ation of desktop and server computers has not yet been extended well to embed-
ded computing (see the challenges with EEMBC, for example, in Section 1.8).
Hence, we are left for now with qualitative descriptions, which do not fit well
with the rest of the book. As a result, in this edition we consolidated the embed-
ded material into a single appendix. We believe this new appendix (Appendix D)
improves the flow of ideas in the text while still allowing readers to see how the
differing requirements affect embedded computing.

Defining Computer Architecture

The task the computer designer faces is a complex one: Determine what
attributes are important for a new computer, then design a computer to maximize
performance while staying within cost, power, and availability constraints. This
task has many aspects, including instruction set design, functional organization,
logic design, and implementation. The implementation may encompass inte-
grated circuit design, packaging, power, and cooling. Optimizing the design
requires familiarity with a very wide range of technologies, from compilers and
operating systems to logic design and packaging.

In the past, the term computer architecture often referred only to instruction
set design. Other aspects of computer design were called implementation, often
insinuating that implementation is uninteresting or less challenging.

We believe this view is incorrect. The architect’s or designer’s job is much
more than instruction set design, and the technical hurdles in the other aspects of
the project are likely more challenging than those encountered in instruction set
design. We’ll quickly review instruction set architecture before describing the
larger challenges for the computer architect.

Instruction Set Architecture

We use the term instruction set architecture (ISA) to refer to the actual programmer-
visible instruction set in this book. The ISA serves as the boundary between the
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software and hardware. This quick review of ISA will use examples from MIPS
and 80x86 to illustrate the seven dimensions of an ISA. Appendices B and J give
more details on MIPS and the 80x86 ISAs.

1.

2.

3.

Class of ISA—Nearly all ISAs today are classified as general-purpose register
architectures, where the operands are either registers or memory locations.
The 80x86 has 16 general-purpose registers and 16 that can hold floating-
point data, while MIPS has 32 general-purpose and 32 floating-point registers
(see Figure 1.4). The two popular versions of this class are register-memory
ISAs such as the 80x86, which can access memory as part of many instruc-
tions, and load-store ISAs such as MIPS, which can access memory only
with load or store instructions. All recent ISAs are load-store.

Memory addressing—Virtually all desktop and server computers, including
the 80x86 and MIPS, use byte addressing to access memory operands. Some
architectures, like MIPS, require that objects must be aligned. An access to an
object of size s bytes at byte address A is aligned if A mod s = 0. (See Figure
B.5 on page B-9.) The 80x86 does not require alignment, but accesses are
generally faster if operands are aligned.

Addressing modes—In addition to specifying registers and constant operands,
addressing modes specify the address of a memory object. MIPS addressing
modes are Register, Immediate (for constants), and Displacement, where a
constant offset is added to a register to form the memory address. The 80x86
supports those three plus three variations of displacement: no register (abso-
lute), two registers (based indexed with displacement), two registers where

Name Number  Use Preserved across a call?
$zero 0 The constant value 0 N.A.
$at 1 Assembler temporary No
$v0-$vl 2-3 Values for function results and No
expression evaluation

$a0-$a3 4-7 Arguments No
$t0-$t7 8-15 Temporaries No
$s0-$s7 16-23 Saved temporaries Yes
$t8-$t9 24-25 Temporaries No
$k0-$k1 26-27 Reserved for OS kernel No
$ap 28 Global pointer Yes
$sp 29 Stack pointer . Yes
$fp 30 Frame pointer Yes
$ra 31 Return address Yes

Figure 1.4 MIPS registers and usage conventions. In addition to the 32 general-
purpose registers (R0-R31), MIPS has 32 floating-point registers (FO-F31) that can hold
either a 32-bit single-precision number or a 64-bit double-precision number.
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one register is multiplied by the size of the operand in bytes (based with
scaled index and displacement). It has more like the last three, minus the dis-
placement field: register indirect, indexed, and based with scaled index.

Types and sizes of operands—Like most ISAs, MIPS and 80x86 support
operand sizes of 8-bit (ASCII character), 16-bit (Unicode character or half
word), 32-bit (integer or word), 64-bit (double word or long integer), and
IEEE 754 floating point in 32'bit (single precision) and 64-bit (double pre-
cision). The 80x86 also supports 80-bit floating point (extended double
precision). ‘

. Operations—The general categories of operations are data transfer, arith-

metic logical, control (discussed next), and floating point. MIPS is a simple
and easy-to-pipeline instruction set architecture, and it is representative of the
RISC architectures being used in 2006. Figure 1.5 summarizes the MIPS ISA.
The 80x86 has a much richer and larger set of operations (see Appendix J).

. Control flow instructions—Virtually all ISAs, including 80x86 and MIPS,

support conditional branches, unconditional jumps, procedure calls, and
returns. Both use PC-relative addressing, where the branch address is speci-
fied by an address field that is added to the PC. There are some small differ-
ences. MIPS conditional branches (BE, BNE, etc.) test the contents of registers,
while the 80x86 branches (JE, JNE, etc.) test condition code bits set as side
effects of arithmetic/logic operations. MIPS procedure call (JAL) places the
return address in a register, while the 80x86 call (CALLF) places the return
address on a stack in memory.

. Encoding an ISA—There are two basic choices on encoding: fixed length and

variable length. All MIPS instructions are 32 bits long, which simplifies
instruction decoding. Figure 1.6 shows the MIPS instruction formats. The
80x86 encoding is variable length, ranging from 1 to 18 bytes. Variable-
length instructions can take less space than fixed-length instructions, so a pro-
gram compiled for the 80x86 is usually smaller than the same program com-
piled for MIPS. Note that choices mentioned above will affect how the
instructions are encoded into a binary representation. For example, the num-
ber of registers and the number of addressing modes both have a significant
impact on the size of instructions, as the register field and addressing mode
field can appear many times in a single instruction.

The other challenges facing the computer architect beyond ISA design are

particularly acute at the present, when the differences among instruction sets are
small and when there are distinct application areas. Therefore, starting with this
edition, the bulk of instruction set material beyond this quick review is found in
the appendices (see Appendices B and J).

We use a subset of MIPS64 as the example ISA in this book.
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Instruction type/opcode

Instruction meaning

Data transfers

Move data between registers and memory, or between the integer and FP or special

registers; only memory address mode is 16-bit displacement + contents of a GPR

LB, LBU, SB Load byte, load byte unsigned, store byte (to/from integer registers)

LH, LHY, SH Load half word, load half word unsigned, store half word (to/from integer registers)
LW, LWU, SW Load word, load word unsigned, store word (to/from integer registers)

LD, SD Load double word, store double word (to/from integer registers)

L.S,L.D,S.S,S.D Load SP float, load DP float, store SP float, store DP float

MFCO, MTCO Copy from/to GPR to/from a special register

MOV.S, MOV.D Copy one SP or DP FP register to another FP register

MFC1, MTC1 Copy 32 bits to/from FP registers from/to integer registers

Arithmetic/logical Operations on integer or logical data in GPRs; signed arithmetic trap on overflow
DADD, DADDI, DADDU, DADDIU  Add, add immediate (all immediates are 16 bits); signed and unsigned

DSUB, DSUBU Subtract; signed and unsigned

DMUL, DMULU, DDIV, Multiply and divide, signed and unsigned; multiply-add; all operations take and yield
DDIVU, MADD 64-bit values

AND, ANDI And, and immediate

OR, ORI, XOR, XORI Or, or immediate, exclusive or, exclusive or immediate

LUI Load upper immediate; loads bits 32 to 47 of register with immediate, then sign-extends

DSLL, DSRL, DSRA, DSLLYV,
DSRLV, DSRAV

SLT, SLTI, SLTY, SLTIU

Shifts: both immediate (DS__) and variable form (DS__V); shifts are shift left logical,

right logical, right arithmetic
Set less than, set less than immediate; signed and unsigned

Control Conditional branches and jumps; PC-relative or through register

BEQZ, BNEZ Branch GPRs equal/not equal to zero; 16-bit offset from PC+4

BEQ, BNE Branch GPR equal/not equal; 16-bit offset from PC + 4

BC1T, BC1F Test comparison bit in the FP status register and branch; 16-bit offset from PC + 4
MOVN, MOVZ Copy GPR to another GPR if third GPR is negative, zero

J,JR Jumps: 26-bit offset from PC + 4 (J) or target in register (JR)

JAL, JALR Jump and link: save PC + 4 in R31, target is PC-relative (JAL) or a register (JALR)
TRAP Transfer to operating system at a vectored address

ERET Return to user code from an exception; restore user mode

Floating point FP operations on DP and SP formats

ADD.D, ADD. S, ADD.PS
SUB.D, SUB.S, SUB.PS
MUL.D, MUL.S, MUL.PS
MADD. D, MADD. S, MADD..PS
DIV.D, DIV.S, DIV.PS
CVT._.

Cc._.p,C._.S

Add DP, SP numbers, and pairs of SP numbers

Subtract DP, SP numbers, and pairs of SP numbers
Multiply DP, SP floating point, and pairs of SP numbers
Multiply-add DP, SP numbers, and pairs of SP numbers
Divide DP, SP floating point, and pairs of SP numbers

Convert instructions: CVT.x.y converts from type X to type y, where x and y are L
(64-bit integer), W (32-bit integer), D (DP), or S (SP). Both operands are FPRs.

DP and SP compares: “__~ = LT,GT,LE,GE,EQ,NE; sets bit in FP status register

Figure 1.5 Subset of the instructions in MIPS64. SP = single precision; DP = double precision. Appendix B gives
much more detail on MIPS64. For data, the most significant bit number is 0; least is 63.
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Basic instruction formats

R Lopcode I s I nt I rd shamt funct ]
31 26 25 21 20 16 15 11 10 65 0

| l opcode l s I n | immediate ]
31 26 25 21 20 16 15

J Lopcode I address I
31 26 25

Floating-point instruction formats

FR| opode | tmt [ & [ fd funct |
31 26 25 21 20 16 15 11 10 65 0

Fi I opcode ] fmt I ft | immediate —l
31 26 25 21 20 16 15

Figure 1.6 MIPS64 instruction set architecture formats. All instructions are 32 bits
long.The R format is for integer register-to-register operations, such as DADDU, DSUBU,
and so on.The | format is for data transfers, branches, and immediate instructions, such
as LD, SD, BEQZ, and DADDIs. The J format is for jumps, the FR format for floating point
operations, and the Fl format for floating point branches.

The Rest of Computer Architecture: Designing the
Organization and Hardware to Meet Goals and
Functional Requirements

The implementation of a computer has two components: organization and
hardware. The term organization includes the high-level aspects of a computer’s
design, such as the memory system, the memory interconnect, and the design of
the internal processor or CPU (central processing unit—where arithmetic, logic,
branching, and data transfer are implemented). For example, two processors with
the same instruction set architectures but very different organizations are the
AMD Opteron 64 and the Intel Pentium 4. Both processors implement the x86
instruction set, but they have very different pipeline and cache organizations.

Hardware refers to the specifics of a computer, including the detailed logic
design and the packaging technology of the computer. Often a line of computers
contains computers with identical instruction set architectures and nearly identi-
cal organizations, but they differ in the detailed hardware implementation. For
example, the Pentium 4 and the Mobile Pentium 4 are nearly identical, but offer
different clock rates and different memory systems, making the Mobile Pentium
4 more effective for low-end computers.

In this book, the word architecture covers all three aspects of computer
design—instruction set architecture, organization, and hardware.

Computer architects must design a computer to meet functional requirements
as well as price, power, performance, and availability goals. Figure 1.7 summa-
rizes requirements to consider in designing a new computer. Often, architects
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Functional requirements

Typical features required or supported

Application area

General-purpose desktop

Scientific desktops and servers

Commercial servers

Embedded computing

Target of computer

Balanced performance for a range of tasks, including interactive performance for
graphics, video, and audio (Ch. 2, 3, 5, App. B)

High-performance floating point and graphics (App. I)

Support for databases and transaction processing; enhancements for reliability and
availability; support for scalability (Ch. 4, App. B, E)

Often requires special support for graphics or video (or other application-specific
extension); power limitations and power control may be required (Ch. 2, 3, 5, App.
B)

Level of software compatibility
At programming language

Object code or binary
compatible

Determines amount of existing software for computer
Most flexible for designer; need new compiler (Ch. 4, App. B)

Instruction set architecture is completely defined—Ilittle flexibility—but no
investment needed in software or porting programs

Operating system requirements
Size of address space
Memory management

Protection

Necessary features to support chosen OS (Ch. 5, App. E)

Very important feature (Ch. 5); may limit applications

Required for modern OS; may be paged or segmented (Ch. 5)

Different OS and application needs: page vs. segment; virtual machines (Ch. 5)

Standards
Floating point

/O interfaces
Operating systems
Networks

Programming languages

Certain standards may be required by marketplace

Format and arithmetic: IEEE 754 standard (App. I), special arithmetic for graphics
or signal processing

For I/O devices: Serial ATA, Serial Attach SCSI, PCI Express (Ch. 6, App. E)
UNIX, Windows, Linux, CISCO 10S

Support required for different networks: Ethernet, Infiniband (App. E)
Languages (ANSI C, C++, Java, FORTRAN) affect instruction set (App. B)

Figure 1.7 Summary of some of the most important functional requirements an architect faces.The left-hand
column describes the class of requirement, while the right-hand column gives specific examples. The right-hand col-
umn also contains references to chapters and appendices that deal with the specific issues.

also must determine what the functional requirements are, which can be a major
task. The requirements may be specific features inspired by the market. Applica-
tion software often drives the choice of certain functional requirements by deter-
mining how the computer will be used. If a large body of software exists for a
certain instruction set architecture, the architect may decide that a new computer
should implement an existing instruction set. The presence of a large market for a
particular class of applications might encourage the designers to incorporate
requirements that would make the computer competitive in that market. Many of
these requirements and features are examined in depth in later chapters.

Architects must also be aware of important trends in both the technology and

the use of computers, as such trends not only affect future cost, but also the lon-
gevity of an architecture.
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1.4

>

Trends in Technology

If an instruction set architecture is to be successful, it must be designed to survive
rapid changes in computer technology. After all. a successful new instruction set
architecture may last decades—for example, the core of the IBM mainframe has
been in use for more than 40 years. An architect must plan for technology
changes that can increase the lifetime of a successful computer.

To plan for the evolution of a computer, the designer must be aware of rapid
changes in implementation technology. Four implementation technologies, which
change at a dramatic pace, are critical to modern implementations:

m Integrated circuit logic technology—Transistor density increases by about
35% per year, quadrupling in somewhat over four years. Increases in die size
are less predictable and slower, ranging from 10% to 20% per year. The com-
bined effect is a growth rate in transistor count on a chip of about 40% to 55%
per year. Device speed scales more slowly, as we discuss below.

m  Semiconductor DRAM (dynamic random-access memory)—Capacity
increases by about 40% per year, doubling roughly every two years.

w  Magnetic disk technology—Prior to 1990, density increased by about 30%
per year, doubling in three years. It rose to 60% per year thereafter, and
increased to 100% per year in 1996. Since 2004, it has dropped back to
30% per year. Despite this roller coaster of rates of improvement, disks are
still 50-100 times cheaper per bit than DRAM. This technology is central to
Chapter 6, and we discuss the trends in detail there.

m  Network technology—Network performance depends both on the perfor-
mance of switches and on the performance of the transmission system. We
discuss the trends in networking in Appendix E.

These rapidly changing technologies shape the design of a computer that,
with speed and technology enhancements, may have a lifetime of five or more
years. Even within the span of a single product cycle for a computing system
(two years of design and two to three years of production), key technologies such
as DRAM change sufficiently that the designer must plan for these changes.
Indeed, designers often design for the next technology, knowing that when a
product begins shipping in volume that next technology may be the most cost-
effective or may have performance advantages. Traditionally, cost has decreased
at about the rate at which density increases.

Although technology improves continuously, the impact of these improve-
ments can be in discrete leaps, as a threshold that allows a new capability is
reached. For example, when MOS technology reached a point in the early 1980s
where between 25,000 and 50,000 transistors could fit on a single chip, it became
possible to build a single-chip, 32-bit microprocessor. By the late 1980s, first-
level caches could go on chip. By eliminating chip crossings within the processor
and between the processor and the cache, a dramatic improvement in cost-
performance and power-performance was possible. This design was simply infea-
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sible until the technology reached a certain point. Such technology thresholds are
not rare and have a significant impact on a wide variety of design decisions.

Performance Trends: Bandwidth over Latency

As we shall see in Section 1.8, bandwidth or throughput is the total amount of
work done in a given time, such as megabytes per second for a disk transfer, In
contrast, latency or response time is the time between the start and the comple-
tion of an event, such as milliseconds for a disk access. Figure 1.8 plots the rela-
tive improvement in bandwidth and latency for technology milestones for
microprocessors, memory, networks, and disks. Figure 1.9 describes the exam-
ples and milestones in more detail. Clearly, bandwidth improves much more rap-
idly than latency.

Performance is the primary differentiator for microprocessors and networks,
so they have seen the greatest gains: 1000-2000X in bandwidth and 20-40X in
latency. Capacity is generally more important than performance for memory and
disks, so capacity has improved most, yet their bandwidth advances of 120-140X
are still much greater than their gains in latency of 4-8X. Clearly, bandwidth has
outpaced latency across these technologies and will likely continue to do so.

A simple rule of thumb is that bandwidth grows by at least the square of the
improvement in latency. Computer designers should make plans accordingly.

1000 |

Relative bandwidth improvement
8

-
o

Relative latency Improvement

Figure 1.8 Log-log plot of bandwidth and latency milestones from Figure 1.9 rela-
tive to the first milestone. Note that latency improved about 10X while bandwidth
improved about 100X to 1000X. From Patterson [2004].
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Microprocessor 16-bit 32-bit 5-stage 2-way Out-of-order Out-of-order
address/bus, address.bus, pipeline, superscalar, 3-way superpipelined,
microcoded microcoded  on-chipl & D 64-bit bus superscalar on-chip 1.2
caches, FPU cache
Product Intel 80286 Inte! 80386 Intel 80486 Intel Pentium  Intel Pentium Pro Intel Pentium 4
Year 1982 1985 1989 1993 1997 2001
Die size (mm?) 47 43 81 90 308 217
Transistors 134,000 275,000 1,200,000 3,100,000 5,500,000 42,000,000
Pins 68 132 168 273 387 423
Latency (clocks) 6 5 5 5 10 22
Bus width (bits) 16 32 32 64 64 64
Clock rate (MHz) 12.5 16 25 66 200 1500
Bandwidth (MIPS) 2 6 25 132 600 4500
Latency (ns) 320 313 200 76 50 15
Memory module DRAM Page mode Fast page Fast page Synchronous Double data
DRAM mode DRAM  mode DRAM DRAM rate SDRAM
Module width (bits) 16 16 32 64 64 64
Year 1980 1983 1986 1993 1997 2000
Mbits/DRAM chip 0.06 0.25 ] 16 64 256
Die size (mm?) 35 45 70 130 170 204
Pins/DRAM chip 16 16 18 20 54 66
Bandwidth (MBit/sec) 13 40 160 267 640 1600
Latency (ns) 225 170 125 75 62 52
Local area network Ethernet Fast Ethernet Gigabit 10 Gigabit
Ethernet Ethernet
IEEE standard 802.3 803.3u 802.3ab 802.3ac
Year 1978 1995 1999 2003
Bandwidth (MBit/sec) 10 100 1000 10000
Latency (psec) 3000 500 340 190
Hard disk 3600 RPM 5400 RPM 7200 RPM 10,000 RPM 15,000 RPM
Product CDC Wrenl Seagate Seagate Seagate Seagate
94145-36 ST41600 ST15150 ST39102 ST373453
Year 1983 1990 1994 1998 2003
Capacity (GB) 0.03 14 43 9.1 73.4
Disk form factor 5.25 inch 5.25 inch 3.5inch 3.5inch 3.5 inch
Media diameter 5.25 inch 5.25 inch 3.5inch 3.0 inch 2.5 inch
Interface ST-412 SCSI SCSI SCSI SCSI
Bandwidth (MBit/sec) 0.6 4 9 24 86
Latency (ms) 48.3 17.1 12.7 8.8 57

Figure 1.9 Performance milestones over 20 to 25 years for microprocessors, memory, networks, and disks.The
microprocessor milestones are six generations of IA-32 processors, going from a 16-bit bus, microcoded 80286 to a
64-bit bus, superscalar, out-of-order execution, superpipelined Pentium 4. Memory module milestones go from 16-
bit-wide, plain DRAM to 64-bit-wide double data rate synchronous DRAM. Ethernet advanced from 10 Mb/sec to 10
Gb/sec. Disk milestones are based on rotation speed, improving from 3600 RPM to 15,000 RPM. Each case is best-
case bandwidth, and latency is the time for a simple operation assuming no contention. From Patterson [2004].
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Scaling of Transistor Performance and Wires

Integrated circuit processes are characterized by the feature size, which is the
minimum size of a transistor or a wire in either the x or y dimension. Feature
sizes have decreased from 10 microns in 1971 to 0.09 microns in 2006; in fact,
we have switched units, so production in 2006 is now referred to as “90 nanome-
ters,” and 65 nanometer chips are underway. Since the transistor count per square
millimeter of silicon is determined by the surface area of a transistor, the density
of transistors increases quadratically with a linear decrease in feature size.

The increase in transistor performance, however, is more complex. As feature
sizes shrink, devices shrink quadratically in the horizontal dimension and also
shrink in the vertical dimension. The shrink in the vertical dimension requires a
reduction in operating voltage to maintain correct operation and reliability of the
transistors. This combination of scaling factors leads to a complex interrelation-
ship between transistor performance and process feature size. To a first approxi-
mation, transistor performance improves linearly with decreasing feature size.

The fact that transistor count improves quadratically with a linear improve-
ment in transistor performance is both the challenge and the opportunity for
which computer architects were created! In the early days of microprocessors,
the higher rate of improvement in density was used to move quickly from 4-bit,
to 8-bit, to 16-bit, to 32-bit microprocessors. More recently, density improve-
ments have supported the introduction of 64-bit microprocessors as well as many
of the innovations in pipelining and caches found in Chapters 2, 3, and 5.

Although transistors generally improve in performance with decreased fea-
ture size, wires in an integrated circuit do not. In particular, the signal delay for a
wire increases in proportion to the product of its resistance and capacitance. Of
course, as feature size shrinks, wires get shorter, but the resistance and capaci-
tance per unit length get worse. This relationship is complex, since both resis-
tance and capacitance depend on detailed aspects of the process, the geometry of
a wire, the loading on a wire, and even the adjacency to other structures. There
are occasional process enhancements, such as the introduction of copper, which
provide one-time improvements in wire delay.

In general, however, wire delay scales poorly compared to transistor perfor-
mance, creating additional challenges for the designer. In the past few years, wire
delay has become a major design limitation for large integrated circuits and is
often more critical than transistor switching delay. Larger and larger fractions of
the clock cycle have been consumed by the propagation delay of signals on wires.
In 2001, the Pentium 4 broke new ground by allocating 2 stages of its 20+-stage
pipeline just for propagating signals across the chip.

Trends in Power in Integrated Circuits

Power also provides challenges as devices are scaled. First, power must be
brought in and distributed around the chip, and modern microprocessors use
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hundreds of pins and multiple interconnect layers for just power and ground. Sec-
ond, power is dissipated as heat and must be removed.

For CMOS chips, the traditional dominant energy consumption has been in
switching transistors, also called dynamic power. The power required per transis-
tor is proportional to the product of the load capacitance of the transistor, the
square of the voltage, and the frequency of switching, with watts being the unit:

Powerdynamic = 1/2 X Capacitive load x Voltage:2 X Frequency switched

Mobile devices care about battery life more than power, so energy is the proper
metric, measured in joules:

Enc:rgydynamic = Capacitive load x Voltagc:2

Hence, dynamic power and energy are greatly reduced by lowering the volt-
age, and so voltages have dropped from 5V to just over 1V in 20 years. The
capacitive load is a function of the number of transistors connected to an output
and the technology, which determines the capacitance of the wires and the tran-
sistors. For a fixed task, slowing clock rate reduces power, but not energy.

Example

Answer

Some microprocessors today are designed to have adjustable voltage, so that a
15% reduction in voltage may result in a 15% reduction in frequency. What
would be the impact on dynamic power?

Since the capacitance is unchanged, the answer is the ratios of the voltages and
frequencies:
Power,,, _ (Voltage x 0.85)> x (Frequency switched X 0.85) _ ) ¢s3

5
Power ;4 8

= 0.61

Voltage2 x Frequency switched

thereby reducing power to about 60% of the original.

As we move from one process to the next, the increase in the number of
transistors switching, and the frequency with which they switch, dominates the
decrease in load capacitance and voltage, leading to an overall growth in power
consumption and energy. The first microprocessors consumed tenths of a watt,
while a 3.2 GHz Pentium 4 Extreme Edition consumes 135 watts. Given that
this heat must be dissipated from a chip that is about 1 cm on a side, we are
reaching the limits of what can be cooled by air. Several Intel microprocessors
have temperature diodes to reduce activity automatically if the chip gets too
hot. For example, they may reduce voltage and clock frequency or the instruc-
tion issue rate.

Distributing the power, removing the heat, and preventing hot spots have
become increasingly difficult challenges. Power is now the major limitation to
using transistors; in the past it was raw silicon area. As a result of this limitation,
most microprocessors today turn off the clock of inactive modules to save energy
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and dynamic power. For example, if no floating-point instructions are executing,
the clock of the floating-point unit is disabled.

Although dynamic power is the primary source of power dissipation in
CMOS, static power is becoming an important issue because leakage current
flows even when a transistor is off:

Power, = Current,

static X Voltage

static

Thus, increasing the number of transistors increases power even if they are turned
off, and leakage current increases in processors with smaller transistor sizes. As a
result, very low power systems are even gating the voltage to inactive modules to
control loss due to leakage. In 2006, the goal for leakage is 25% of the total
power consumption, with leakage in high-performance designs sometimes far
exceeding that goal. As mentioned before, the limits of air cooling have led to
exploration of multiple processors on a chip running at lower voltages and clock
rates.

Trends in Cost

Although there are computer designs where costs tend to be less important—
specifically supercomputers—cost-sensitive designs are of growing significance.
Indeed, in the past 20 years, the use of technology improvements to lower cost, as
well as increase performance, has been a major theme in the computer industry.

Textbooks often ignore the cost half of cost-performance because costs
change, thereby dating books, and because the issues are subtle and differ across
industry segments. Yet an understanding of cost and its factors is essential for
designers to make intelligent decisions about whether or not a new feature should
be included in designs where cost is an issue. (Imagine architects designing sky-
scrapers without any information on costs of steel beams and concrete!)

This section discusses the major factors that influence the cost of a computer
and how these factors are changing over time.

The Impact of Time, Volume, and Commodification

The cost of a manufactured computer component decreases over time even with-
out major improvements in the basic implementation technology. The underlying
principle that drives costs down is the learning curve—manufacturing costs
decrease over time. The learning curve itself is best measured by change in
yield—the percentage of manufactured devices that survives the testing proce-
dure. Whether it is a chip, a board, or a system, designs that have twice the yield
will have half the cost.

Understanding how the learning curve improves yield is critical to projecting
costs over a product’s life. One example is that the price per megabyte of DRAM
has dropped over the long term by 40% per year. Since DRAM:s tend to be priced
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in close relationship to cost—with the exception of periods when there is a short-
age or an oversupply—price and cost of DRAM track closely. .

Microprocessor prices also drop over time, but because they are less stan-
dardized than DRAMs, the relationship between price and cost is more complex.
In a period of significant competition, price tends to track cost closely, although
microprocessor vendors probably rarely sell at a loss. Figure 1.10 shows proces-
sor price trends for Intel microprocessors.

Volume is a second key factor in determining cost. Increasing volumes affect
cost in several ways. First, they decrease the time needed to get down the learning
curve, which is partly proportional to the number of systems (or chips) manufac-
tured. Second, volume decreases cost, since it increases purchasing and manu-
facturing efficiency. As a rule of thumb, some designers have estimated that cost
decreases about 10% for each doubling of volume. Moreover, volume decreases
the amount of development cost that must be amortized by each computer, thus
allowing cost and selling price to be closer.

$1000
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Figure 1.10 The price of an Intel Pentium 4 and Pentium M at a given frequency
decreases over time as yield enhancements decrease the cost of a good die and
competition forces price reductions.The most recent introductions will continue to
decrease until they reach similar prices to the lowest-cost parts available today ($200).
Such price decreases assume a competitive environment where price decreases track
cost decreases closely. Data courtesy of Microprocessor Report, May 2005.
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Commodities are products that are sold by multiple vendors in large volumes
and are essentially identical. Virtually all the products sold on the shelves of gro-
cery stores are commodities, as are standard DRAMs, disks, monitors, and key-
boards. In the past 15 years, much of the low end of the computer business has
become a commodity business focused on building desktop and laptop computers
running Microsoft Windows.

Because many vendors ship virtually identical products, it is highly competi-
tive. Of course, this competition decreases the gap between cost and selling price,
but it also decreases cost. Reductions occur because a commodity market has
both volume and a clear product definition, which allows multiple suppliers to
compete in building components for the commodity product. As a result, the
overall product cost is lower because of the competition among the suppliers of
the components and the volume efficiencies the suppliers can achieve. This has
led to the low end of the computer business being able to achieve better price-
performance than other sectors and yielded greater growth at the low end,
although with very limited profits (as is typical in any commodity business).

Cost of an Integrated Circuit

Why would a computer architecture book have a section on integrated circuit
costs? In an increasingly competitive computer marketplace where standard
parts—disks, DRAMs, and so on—are becoming a significant portion of any sys-
tem’s cost, integrated circuit costs are becoming a greater portion of the cost that
varies between computers, especially in the high-volume, cost-sensitive portion
of the market. Thus, computer designers must understand the costs of chips to
understand the costs of current computers.

Although the costs of integrated circuits have dropped exponentially, the
basic process of silicon manufacture is unchanged: A wafer is still tested and
chopped into dies that are packaged (see Figures 1.11 and 1.12). Thus the cost of
a packaged integrated circuit is

Cost of die + Cost of testing die + Cost of packaging and final test

Cost of integrated circuit = : -
Final test yield

In this section, we focus on the cost of dies, summarizing the key issues in testing
and packaging at the end.

Learning how to predict the number of good chips per wafer requires first
learning how many dies fit on a wafer and then learning how to predict the per-
centage of those that will work. From there it is simple to predict cost:

Cost of wafer

f die = — —
Cost of die Dies per wafer x Die yield

The most interesting feature of this first term of the chip cost equation is its sensi-
tivity to die size, shown below.
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Figure 1.11 Photograph of an AMD Opteron microprocessor die. (Courtesy AMD.)

The number of dies per wafer is approximately the area of the wafer divided
by the area of the die. It can be more accurately estimated by

7t X (Wafer diameter;’2)2 _ Tt X Wafer diameter

Die area J2 x Die area

Dies per wafer =

The first term is the ratio of wafer area (Ttrz) to die area. The second compensates
for the “square peg in a round hole” problem—rectangular dies near the periph-
ery of round wafers. Dividing the circumference (nd) by the diagonal of a square
die is approximately the number of dies along the edge.

Example

Answer

Find the number of dies per 300 mm (30 cm) wafer for a die thatis 1.5 cm on a
side.

The die area is 2.25 cm?. Thus

nx(30/2)°  mx30 _ 7069 94.2 _

2.25 Ax225 225 212 270

Dies per wafer =

However, this only gives the maximum number of dies per wafer. The critical
question is: What is the fraction of good dies on a wafer number, or the die yield?
A simple model of integrated circuit yield, which assumes that defects are ran-
domly distributed over the wafer and that yield is inversely proportional to the
complexity of the fabrication process, leads to the following:

. . —a
Die yield = Wafer yield x (1 + Defects per um(tx area X Die area)
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LA

Figure 1.12 This 300mm wafer contains 117 AMD Opteron chips implemented in a 90 nm process. (Courtesy
AMD.)

The formula is an empirical model developed by looking at the yield of many
manufacturing lines. Wafer yield accounts for wafers that are completely bad and
so need not be tested. For simplicity, we’ll just assume the wafer yield is 100%.
Defects per unit area is a measure of the random manufacturing defects that
occur. In 2006, these value is typically 0.4 defects per square centimeter for
90 nm, as it depends on the maturity of the process (recall the learning curve,
mentioned earlier). Lastly, o is a parameter that corresponds roughly to the
number of critical masking levels, a measure of manufacturing complexity. For
multilevel metal CMOS processes in 2006, a good estimate is o = 4.0.
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Example

Answer

Find the die yield for dies that are 1.5 cm on a side and 1.0 cm on a side, assum-
ing a defect density of 0.4 per cm?and a is 4.

The total die areas are 2.25 cm? and 1.00 cm?. For the larger die, the yield is

4
Die yield = (1 +9'2‘—?;2-§) = 0.44
40

4
0.4 x 1.00) = 0.68

For the smaller die, it is Die yield = (1 + 70

That is, less than half of all the large die are good but more than two-thirds of the
small die are good.

The bottom line is the number of good dies per wafer, which comes from
multiplying dies per wafer by die yield to incorporate the effects of defects. The
examples above predict about 120 good 2.25 cm? dies from the 300 mm wafer
and 435 good 1.00 cm? dies. Many 32-bit and 64-bit microprocessors in a mod-
ern 90 nm technology fall between these two sizes. Low-end embedded 32-bit
processors are sometimes as small as 0.25 cm?, and processors used for embed-
ded control (in printers, automobiles, etc.) are often less than 0.1 cm?.

Given the tremendous price pressures on commodity products such as
DRAM and SRAM, designers have included redundancy as a way to raise yield.
For a number of years, DRAMs have regularly included some redundant memory
cells, so that a certain number of flaws can be accommodated. Designers have
used similar techniques in both standard SRAMs and in large SRAM arrays used
for caches within microprocessors. Obviously, the presence of redundant entries
can be used to boost the yield significantly.

Processing of a 300 mm (12-inch) diameter wafer in a leading-edge technol-
ogy costs between $5000 and $6000 in 2006. Assuming a processed wafer cost of
$5500, the cost of the 1.00 cm? die would be around $13, but the cost per die of
the 2.25 cm? die would be about $46, or almost four times the cost for a die that
is a little over twice as large.

What should a computer designer remember about chip costs? The manufac-
turing process dictates the wafer cost, wafer yield, and defects per unit area, so
the sole control of the designer is die area. In practice, because the number of
defects per unit area is small, the number of good dies per wafer, and hence the
cost per die, grows roughly as the square of the die area. The computer designer
affects die size, and hence cost, both by what functions are included on or
excluded from the die and by the number of I/O pins.

Before we have a part that is ready for use in a computer, the die must be
tested (to separate the good dies from the bad), packaged, and tested again after
packaging. These steps all add significant costs.

The above analysis has focused on the variable costs of producing a func-
tional die, which is appropriate for high-volume integrated circuits. There is,
however, one very important part of the fixed cost that can significantly affect the
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cost of an integrated circuit for low volumes (less than 1 million parts), namely,
the cost of a mask set. Each step in the integrated circuit process requires a sepa-
rate mask. Thus, for modern high-density fabrication processes with four to six
metal layers, mask costs exceed $1 million. Obviously, this large fixed cost
affects the cost of prototyping and debugging runs and, for small-volume produc-
tion, can be a significant part of the production cost. Since mask costs are likely
to continue to increase, designers may incorporate reconfigurable logic to
enhance the flexibility of a part, or choose to use gate arrays (which have fewer
custom mask levels) and thus reduce the cost implications of masks.

Cost versus Price

With the commoditization of the computers, the margin between the cost to the
manufacture a product and the price the product sells for has been shrinking.
Those margins pay for a company’s research and development (R&D), market-
ing, sales, manufacturing equipment maintenance, building rental, cost of financ-
ing, pretax profits, and taxes. Many engineers are surprised to find that most
companies spend only 4% (in the commodity PC business) to 12% (in the high-
end server business) of their income on R&D, which includes all engineering.

Dependability

Historically, integrated circuits were one of the most reliable components of a
computer. Although their pins may be vulnerable, and faults may occur over
communication channels, the error rate inside the chip was very low. That con-
ventional wisdom is changing as we head to feature sizes of 65 nm and smaller,
as both transient faults and permanent faults will become more commonplace, so
architects must design systems to cope with these challenges. This section gives
an quick overview of the issues in dependability, leaving the official definition of
the terms and approaches to Section 6.3.

Computers are designed and constructed at different layers of abstraction. We
can descend recursively down through a computer seeing components enlarge
themselves to full subsystems until we run into individual transistors. Although
some faults are widespread, like the loss of power, many can be limited to a sin-
gle component in a module. Thus, utter failure of a module at one level may be
considered merely a component error in a higher-level module. This distinction is
helpful in trying to find ways to build dependable computers.

One difficult question is deciding when a system is operating properly. This
philosophical point became concrete with the popularity of Internet services.
Infrastructure providers started offering Service Level Agreements (SLA) or
Service Level Objectives (SLO) to guarantee that their networking or power ser-
vice would be dependable. For example, they would pay the customer a penalty if
they did not meet an agreement more than some hours per month. Thus, an SLA
could be used to decide whether the system was up or down.
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1.
2,

Systems alternate between two states of service with respect to an SLA:

Service accomplishment, where the service is delivered as specified

Service interruption, where the delivered service is different from the SLA

Transitions between these two states are caused by failures (from state 1 to state
2) or restorations (2 to 1). Quantifying these transitions leads to the two main
measures of dependability:

Module reliability is a measure of the continuous service accomplishment (or,
equivalently, of the time to failure) from a reference initial instant. Hence, the
mean time to failure (MTTF) is a reliability measure. The reciprocal of
MTTF is a rate of failures, generally reported as failures per billion hours of
operation, or FIT (for failures in time).Thus, an MTTF of 1,000,000 hours
equals 10%10° or 1000 FIT. Service interruption is measured as mean time to
repair (MTTR). Mean time between failures (MTBF) is simply the sum of
MTTF + MTTR. Although MTBF is widely used, MTTF is often the more
appropriate term. If a collection of modules have exponentially distributed
lifetimes—meaning that the age of a module is not important in probability of
failure—the overall failure rate of the collection is the sum of the failure rates
of the modules.

Module availability is a measure of the service accomplishment with respect
to the alternation between the two states of accomplishment and interruption.
For nonredundant systems with repair, module availability is

MTTF

Module availability = m

Note that reliability and availability are now quantifiable metrics, rather than syn-
onyms for dependability. From these definitions, we can estimate reliability of a
system quantitatively if we make some assumptions about the reliability of com-
ponents and that failures are independent.

Example

Assume a disk subsystem with the following components and MTTEF:

10 disks, each rated at 1,000,000-hour MTTF
1 SCSI controller, 500,000-hour MTTF

1 power supply, 200,000-hour MTTF

1 fan, 200,000-hour MTTF

1 SCSI cable, 1,000,000-hour MTTF

Using the simplifying assumptions that the lifetimes are exponentially distributed
and that failures are independent, compute the MTTF of the system as a whole.
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The sum of the failure rates is

_ 1 1 1 1 1
= 10X 7566,000 * 500,000 * 200,000 * 200,000 * 1000,000
_ 10+2+5+5+1_ 23 23,000

~ 1,000,000 hours 1,000,000  1,000,000,000 hours

or 23,000 FIT. The MTTF for the system is just the inverse of the failure rate:

_ 1 _ 1,000,000,000 hours
system ™ Fajlure rate 23,000

Failure rateSystem

MTTF = 43,500 hours

system

or just under 5 years.

The primary way to cope with failure is redundancy, either in time (repeat the
operation to see if it still is erroneous) or in resources (have other components to
take over from the one that failed). Once the component is replaced and the sys-
tem fully repaired, the dependability of the system is assumed to be as good as
new. Let’s quantify the benefits of redundancy with an example.

Example

Answer

MTTF

Disk subsystems often have redundant power supplies to improve dependability.
Using the components and MTTFs from above, calculate the reliability of a
redundant power supply. Assume one power supply is sufficient to run the disk
subsystem and that we are adding one redundant power supply.

We need a formula to show what to expect when we can tolerate a failure and still
provide service. To simplify the calculations, we assume that the lifetimes of the
components are exponentially distributed and that there is no dependency
between the component failures. MTTF for our redundant power supplies is the
mean time until one power supply fails divided by the chance that the other will
fail before the first one is replaced. Thus, if the chance of a second failure before
repair is small, then MTTF of the pair is large.

Since we have two power supplies and independent failures, the mean time
until one disk fails is MTTFpoyer supply / 2- A good approximation of the proba-
bility of a second failure is MTTR over the mean time until the other power
supply fails. Hence, a reasonable approximation for a redundant pair of power
supplies is

MTerower supply

ower supply pair —
P PPy P MTerower supply

MTTF

2 TTFZ
/2 _ MTTF powersupply/ 2 _ M power supply

MTTR oer supply 2 X MTTR

power supply
power supply

Using the MTTF numbers above, if we assume it takes on average 24 hours for a
human operator to notice that a power supply has failed and replace it, the reli-
ability of the fault tolerant pair of power supplies is

2
= MTTFpower supply = 200,0002
pover SUpply PAIr = I3 MTTR pgurer cupply 2 X 24

making the pair about 4150 times more reliable than a single power supply.

MTTF = 830,000,000




28

®

Chapter One Fundamentals of Computer Design

1.8

Having quantified the cost, power, and dependability of computer technology, we
are ready to quantify performance.

A

Measuring, Reporting, and Summarizing Performance

When we say one computer is faster than another is, what do we mean? The user
of a desktop computer may say a computer is faster when a program runs in less
time, while an Amazon.com administrator may say a computer is faster when it
completes more transactions per hour. The computer user is interested in reduc-
ing response time—the time between the start and the completion of an event—
also referred to as execution time. The administrator of a large data processing
center may be interested in increasing throughput—the total amount of work
done in a given time.

In comparing design alternatives, we often want to relate the performance of
two different computers, say, X and Y. The phrase “X is faster than Y” is used
here to mean that the response time or execution time is lower on X than on'Y for
the given task. In particular, “X is n times faster than Y”’ will mean

Execution timey

Execution timey

Since execution time is the reciprocal of performance, the following relationship
holds:

1
Execution timey  Performancey,  Performancey

n= — = =
Execution timey 1 Performance,
Performancey

The phrase “the throughput of X is 1.3 times higher than Y” signifies here
that the number of tasks completed per unit time on computer X is 1.3 times the
number completed on Y.

Unfortunately, time is not always the metric quoted in comparing the perfor-
mance of computers. Our position is that the only consistent and reliable measure
of performance is the execution time of real programs, and that all proposed
alternatives to time as the metric or to real programs as the items measured have
eventually led to misleading claims or even mistakes in computer design.

Even execution time can be defined in different ways depending on what we
count. The most straightforward definition of time is called wall-clock time,
response time, or elapsed time, which is the latency to complete a task, including
disk accesses, memory accesses, input/output activities, operating system over-
head—everything. With multiprogramming, the processor works on another pro-
gram while waiting for /O and may not necessarily minimize the elapsed time of
one program. Hence, we need a term to consider this activity. CPU time recog-
nizes this distinction and means the time the processor is computing, not includ-
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ing the time waiting for I/O or running other programs. (Clearly, the response
time seen by the user is the elapsed time of the program, not the CPU time.)

Computer users who routinely run the same programs would be the perfect
candidates to evaluate a new computer. To evaluate a new system the users would
simply compare the execution time of their workloads—the mixture of programs
and operating system commands that users run on a computer. Few are in this
happy situation, however. Most must rely on other methods to evaluate comput-
ers, and often other evaluators, hoping that these methods will predict per-
formance for their usage of the new computer.

Benchmarks

The best choice of benchmarks to measure performance are real applications,
such as a compiler. Attempts at running programs that are much simpler than a
real application have led to performance pitfalls. Examples include

m kernels, which are small, key pieces of real applications;

m toy programs, which are 100-line programs from beginning programming
assignments, such as quicksort; and

m synthetic benchmarks, which are fake programs invented to try to match the
profile and behavior of real applications, such as Dhrystone.

All three are discredited today, usually because the compiler writer and architect
can conspire to make the computer appear faster on these stand-in programs than
on real applications.

Another issue is the conditions under which the benchmarks are run. One
way to improve the performance of a benchmark has been with benchmark-
specific flags; these flags often caused transformations that would be illegal on
many programs or would slow down performance on others. To restrict this pro-
cess and increase the significance of the results, benchmark developers often
require the vendor to use one compiler and one set of flags for all the programs in
the same language (C or FORTRAN). In addition to the question of compiler
flags, another question is whether source code modifications are allowed. There
are three different approaches to addressing this question:

1. No source code modifications are allowed.

2. Source code modifications are allowed, but are essentially impossible. For
example, database benchmarks rely on standard database programs that are
tens of millions of lines of code. The database companies are highly unlikely
to make changes to enhance the performance for one particular computer.

3. Source modifications are allowed, as long as the modified version produces
the same output.

The key issue that benchmark designers face in deciding to allow modification of
the source is whether such modifications will reflect real practice and provide
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useful insight to users, or whether such modifications simply reduce the accuracy
of the benchmarks as predictors of real performance.

To overcome the danger of placing too many eggs in one basket, collections
of benchmark applications, called benchmark suites, are a popular measure of
performance of processors with a variety of applications. Of course, such suites
are only as good as the constituent individual benchmarks. Nonetheless, a key
advantage of such suites is that the weakness of any one benchmark is lessened
by the presence of the other benchmarks. The goal of a benchmark suite is that it
will characterize the relative performance of two computers, particularly for pro-
grams not in the suite that customers are likely to run.

As a cautionary example, the EDN Embedded Microprocessor Benchmark
Consortium (or EEMBC, pronounced “embassy”) is a set of 41 kernels used to
predict performance of different embedded applications: automotive/industrial,
consumer, networking, office automation, and telecommunications. EEMBC
reports unmodified performance and “full fury” performance, where almost any-
thing goes. Because they use kernels, and because of the reporting options,
EEMBC does not have the reputation of being a good predictor of relative perfor-
mance of different embedded computers in the field. The synthetic program
Dhrystone, which EEMBC was trying to replace, is still reported in some embed-
ded circles.

One of the most successful attempts to create standardized benchmark appli-
cation suites has been the SPEC (Standard Performance Evaluation Corporation),
which had its roots in the late 1980s efforts to deliver better benchmarks for
workstations. Just as the computer industry has evolved over time, so has the
need for different benchmark suites, and there are now SPEC benchmarks to
cover different application classes. All the SPEC benchmark suites and their
reported results are found at www.spec.org.

Although we focus our discussion on the SPEC benchmarks in many of the
following sections, there are also many benchmarks developed for PCs running
the Windows operating system.

Desktop Benchmarks

Desktop benchmarks divide into two broad classes: processor-intensive bench-
marks and graphics-intensive benchmarks, although many graphics benchmarks
include intensive processor activity. SPEC originally created a benchmark set
focusing on processor performance (initially called SPEC89), which has evolved
into its fifth generation: SPEC CPU2006, which follows SPEC2000, SPEC95
SPEC92, and SPEC89. SPEC CPU2006 consists of a set of 12 integer bench-
marks (CINT2006) and 17 floating-point benchmarks (CFP2006). Figure 1.13
describes the current SPEC benchmarks and their ancestry.

SPEC benchmarks are real programs modified to be portable and to minimize
the effect of I/O on performance. The integer benchmarks vary from part of a C
compiler to a chess program to a quantum computer simulation. The floating-
point benchmarks include structured grid codes for finite element modeling, par-
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Benchmark name by SPEC generation

SPEC2006 benchmark description SPEC2006 SPEC2000 SPECS5 SPEC92 SPECS89
GNU C compiler gce
Interpreted string processing perl J espresso
Combinatorial optimization mcf li
Block-sorting compression bzip2 compress eqntott
Go game (Al) go vortex go sC
Videc compression h264avc gzip ijpeg
Games/path finding astar eon m88ksim
Search gene sequence hmmer twolf
Quantum computer simulation libquantum vortex
Discrete event simulation library omnetpp vpr
Chess game (Al) sjeng crafty
XML parsing xalancbmk parser
CFD/blast waves bwaves fpppp
Numerical relativity cactusADM tomcatv
Finite element code calculix doduc
Differential equation solver framework dealll nasa7
Quantum chemistry gamess spice
EM solver (freq/time domain) GemsFDTD swim ‘ matrix300
Scalable molecular dynamics (~NAMD) gromacs apsi hydro2d
Lattice Boltzman method (fluid/air flow) Ibm mgrid su2cor
Large eddie simulation/turbulent CFD LESlie3d wupwise applu waves
Lattice quantum chromodynamics milc apply turb3d
Motecular dynamics namd galge!
Image ray tracing povray mesa
Spare linear algebra soplex art
Speech recognition sphinx3 equake
Quantum chemistry/object oriented tonto facerec
Weather research and forecasting wrf ammp
Magneto hydrodynamics (astrophysics) zeusmp lucas

fma3d

sixtrack

Figure 1.13 SPEC2006 programs and the evolution of the SPEC benchmarks over time, with integer programs
above the line and floating-point programs below the line. Of the 12 SPEC2006 integer programs, 9 are written in
C, and the rest in C++. For the floating-point programs the split is 6 in FORTRAN, 4 in C++,3 in C,and 4 in mixed C
and Fortran. The figure shows all 70 of the programs in the 1989, 1992, 1995, 2000, and 2006 releases. The bench-
mark descriptions on the left are for SPEC2006 only and do not apply to earlier ones. Programs in the same row from
different generations of SPEC are generally not related; for example, fpppp is not a CFD code like bwaves. Gce is the
senior citizen of the group. Only 3 integer programs and 3 floating-point programs survived three or more genera-
tions. Note that all the floating-point programs are new for SPEC2006. Although a few are carried over from genera-
tion to generation, the version of the program changes and either the input or the size of the benchmark is often
changed to increase its running time and to avoid perturbation in measurement or domination of the execution
time by some factor other than CPU time.

ticle method codes for molecular dynamics, and sparse linear algebra codes for
fluid dynamics. The SPEC CPU suite is useful for processor benchmarking for
both desktop systems and single-processor servers. We will see data on many of
these programs throughout this text.
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In Section 1.11, we describe pitfalls that have occurred in developing the
SPEC benchmark suite, as well as the challenges in maintaining a useful and pre-
dictive benchmark suite. Although SPEC CPU2006 is aimed at processor perfor-
mance, SPEC also has benchmarks for graphics and Java.

Server Benchmarks

Just as servers have multiple functions, so there are multiple types of bench-
marks. The simplest benchmark is perhaps a processor throughput-oriented
benchmark. SPEC CPU2000 uses the SPEC CPU benchmarks to construct a sim-
ple throughput benchmark where the processing rate of a multiprocessor can be
measured by running multiple copies (usually as many as there are processors) of
each SPEC CPU benchmark and converting the CPU time into a rate. This leads
to a measurement called the SPECrate.

Other than SPECrate, most server applications and benchmarks have signifi-
cant I/O activity arising from either disk or network traffic, including benchmarks
for file server systems, for Web servers, and for database and transaction-
processing systems. SPEC offers both a file server benchmark (SPECSFS) and a
Web server benchmark (SPECWeb). SPECSFS is a benchmark for measuring
NFS (Network File System) performance using a script of file server requests; it
tests the performance of the I/O system (both disk and network I/O) as well as the
processor. SPECSFS is a throughput-oriented benchmark but with important
response time requirements. (Chapter 6 discusses some file and I/O system
benchmarks in detail.) SPECWeb is a Web server benchmark that simulates mul-
tiple clients requesting both static and dynamic pages from a server, as well as
clients posting data to the server.

Transaction-processing (TP) benchmarks measure the ability of a system to
handle transactions, which consist of database accesses and updates. Airline res-
ervation systems and bank ATM systems are typical simple examples of TP,
more sophisticated TP systems involve complex databases and decision-making.
In the mid-1980s, a group of concerned engineers formed the vendor-indepen-
dent Transaction Processing Council (TPC) to try to create realistic and fair
benchmarks for TP. The TPC benchmarks are described at www.tpc.org.

The first TPC benchmark, TPC-A, was published in 1985 and has since been
replaced and enhanced by several different benchmarks. TPC-C, initially created
in 1992, simulates a complex query environment. TPC-H models ad hoc decision
support—the queries are unrelated and knowledge of past queries cannot be used
to optimize future queries. TPC-W is a transactional Web benchmark. The work-
load is performed in a controlled Internet commerce environment that simulates
the activities of a business-oriented transactional Web server. The most recent is
TPC-App, an application server and Web services benchmark. The workload
simulates the activities of a business-to-business transactional application server
operating in a 24x7 environment.

All the TPC benchmarks measure performance in transactions per second. In
addition, they include a response time requirement, so that throughput perfor-
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mance is measured only when the response time limit is met. To model real-
world systems, higher transaction rates are also associated with larger systems, in
terms of both users and the database to which the transactions are applied.
Finally, the system cost for a benchmark system must also be included, allowing
accurate comparisons of cost-performance.

Reporting Performance Results

The guiding principle of reporting performance measurements should be repro-
ducibility—Ilist everything another experimenter would need to duplicate the
results. A SPEC benchmark report requires an extensive description of the com-
puter and the compiler flags, as well as the publication of both the baseline and
optimized results. In addition to hardware, software, and baseline tuning parame-
ter descriptions, a SPEC report contains the actual performance times, shown
both in tabular form and as a graph. A TPC benchmark report is even more com-
plete, since it must include results of a benchmarking audit and cost information.
These reports are excellent sources for finding the real cost of computing sys-
tems, since manufacturers compete on high performance and cost-performance.

Summarizing Performance Results

In practical computer design, you must evaluate myriads of design choices for
their relative quantitative benefits across a suite of benchmarks believed to be rel-
evant. Likewise, consumers trying to choose a computer will rely on performance
measurements from benchmarks, which hopefully are similar to the user’s appli-
cations. In both cases, it is useful to have measurements for a suite of benchmarks
so that the performance of important applications is similar to that of one or more
benchmarks in the suite and that variability in performance can be understood. In
the ideal case, the suite resembles a statistically valid sample of the application
space, but such a sample requires more benchmarks than are typically found in
most suites and requires a randomized sampling, which essentially no benchmark
suite uses.

Once we have chosen to measure performance with a benchmark suite, we
would like to be able to summarize the performance results of the suite in a single
number. A straightforward approach to computing a summary result would be to
compare the arithmetic means of the execution times of the programs in the suite.
Alas, some SPEC programs take four times longer than others, so those programs
would be much more important if the arithmetic mean were the single number
used to summarize performance. An alternative would be to add a weighting fac-
tor to each benchmark and use the weighted arithmetic mean as the single num-
ber to summarize performance. The problem would be then how to pick weights;
since SPEC is a consortium of competing companies, each company might have
their own favorite set of weights, which would make it hard to reach consensus.
One approach is to use weights that make all programs execute an equal time on
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some reference computer, but this biases the results to the performance character-
istics of the reference computer.

Rather than pick weights, we could normalize execution times to a reference
computer by dividing the time on the reference computer by the time on the com-
puter being rated, yielding a ratio proportional to performance. SPEC uses this
approach, calling the ratio the SPECRatio. It has a particularly useful property
that it matches the way we compare computer performance throughout this
text—namely, comparing performance ratios. For example, suppose that the
SPECRatio of computer A on a benchmark was 1.25 times higher than computer
B; then you would know

Execution UME e porence

SPECRatio , Execution time Execution timeg ~ Performance ,

B SPECRatiop ~ Execution time
Execution timeg

reference  EX€cCution time,  Performancey

Notice that the execution times on the reference computer drop out and the
choice of the reference computer is irrelevant when the comparisons are made as
a ratio, which is the approach we consistently use. Figure 1.14 gives an example.
Because a SPECRatio is a ratio rather than an absolute execution time, the
mean must be computed using the geometric mean. (Since SPECRatios have no
units, comparing SPECRatios arithmetically is meaningless.) The formula is

n n
Geometric mean = /H sample;
i=1

In the case of SPEC, sample; is the SPECRatio for program i. Using the geomet-
ric mean ensures two important properties:

1. The geometric mean of the ratios is the same as the ratio of the geometric
means.

2. The ratio of the geometric means is equal to the geometric mean of the per-
formance ratios, which implies that the choice of the reference computer is
irrelevant.

Hence, the motivations to use the geometric mean are substantial, especially
when we use performance ratios to make comparisons.

Example

Show that the ratio of the geometric means is equal to the geometric mean of the
performance ratios, and that the reference computer of SPECRatio matters not.
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U'I!itr::!e5 Opteron Itanium 2 Opteron/Itanium Itanium/Opteron
Benchmarks (sec) Time(sec) SPECRatio Time (sec) SPECRatio Times (sec) SPECRatios
wupwise 1600 51.5 31.06 56.1 28.53 0.92 0.92
swim 3100 125.0 24.73 70.7 43.85 1.77 1.77
mgrid 1800 98.0 18.37 65.8 27.36 1.49 1.49
applu 2100 94.0 22.34 50.9 41.25 1.85 1.85
mesa 1400 64.6 21.69 108.0 12.99 0.60 0.60
galgel 2900 86.4 33.57 40.0 7247 2.16 2.16
art 2600 924 28.13 21.0 123.67 4.40 4.40
equake 1300 72.6 17.92 36.3 35.78 2.00 2.00
facerec 1900 73.6 25.80 86.9 21.86 0.85 0.85
ammp 2200 136.0 16.14 132.0 16.63 1.03 1.03
lucas 2000 88.8 22.52 107.0 18.76 0.83 0.83
fma3d 2100 120.0 17.48 131.0 16.09 0.92 0.92
sixtrack 1100 123.0 8.95 68.8 15.99 1.79 1.79
apsi 2600 150.0 17.36 231.0 11.27 0.65 0.65
Geometric mean 20.86 27.12 1.30 1.30

Figure 1.14 SPECfp2000 execution times (in seconds) for the Sun Ultra 5—the reference computer of
SPEC2000—and execution times and SPECRatios for the AMD Opteron and Intel Itanium 2.(SPEC2000 multiplies
the ratio of execution times by 100 to remove the decimal point from the result, so 20.86 is reported as 2086.) The
final two columns show the ratios of execution times and SPECratios. This figure demonstrates the irrelevance of the
reference computer in relative performance. The ratio of the execution times is identical to the ratio of the SPECRa-
tios, and the ratio of the geometric means (27.12/20.86 = 1.30) is identical to the geometric mean of the ratios (1.30).

Answer

Assume two computers A and B and a set of SPECRatios for each.

n
, SPECRatio A;
Geometric mean, A E !

Geometric meang n i
a| ] | SPECRatio B,
i=1

Execution time

" SPECRatio A,
_H SPECRatio B,

i=1

reference,
n Execution time , " Execution timeg "_Performance ,
- . = T o —
nl - 1Execution tme  corence. Al lExecution time, 1PerformanceB_
i= i i= i = i

Execution timep

That is, the ratio of the geometric means of the SPECRatios of A and B is the
geometric mean of the performance ratios of A to B of all the benchmarks in the
suite. Figure 1.14 demonstrates the validity using examples from SPEC.
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A key question is whether a single mean summarizes the performance of the
programs in the benchmark suite well. If we characterize the variability of the
distribution, using the standard deviation, we can decide whether the mean is
likely to be a good predictor. The standard deviation is more informative if we
know the distribution has one of several standard forms.

One useful possibility is the well-known bell-shaped normal distribution,
whose sample data are, of course, symmetric around the mean. Another is the
lognormal distribution, where the logarithms of the data—not the data itself—are
normally distributed on a logarithmic scale, and thus symmetric on that scale.
(On a linear scale, a lognormal is not symmetric, but has a long tail to the right.)

For example, if each of two systems is 10X faster than the other on two dif-
ferent benchmarks, the relative performance is the set of ratios {.1, 10}. How-
ever, the performance summary should be equal performance. That is, the
average should be 1.0, which in fact is true on a logarithmic scale.

To characterize variability about the arithmetic mean, we use the arithmetic
standard deviation (stdev), often called ©. It is defined as:

n
stdev = /Z (samplei—Mcan)2

i=1

Like the geometric mean, the geometric standard deviation is multiplicative
rather than additive. For working with the geometric mean and the geometric
standard deviation, we can simply take the natural logarithm of the samples,
compute the standard mean and standard deviation, and then take the exponent to
convert back. This insight allows us to describe the multiplicative versions of
mean and standard deviation (gstdev), also often called G, as

n
Geometric mean = exp(’—l1 X 2 ln(samplei)J

i=1

n
gstdev = exp| | 2, (In(sample;) - In(Geometric mean))’

i=1

n

Note that functions provided in a modern spreadsheet program, like EXP( ) and
LN( ), make it easy to calculate the geometric mean and the geometric standard
deviation.

For a lognormal distribution, we expect that 68% of the samples fall in the
range [Mean / gstdev, Mean x gstdev], 95% within [Mean / gstdevz, Mean x
gstdevz], and so on.
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Example

Answer

Using the data in Figure 1.14, calculate the geometric standard deviation and the
percentage of the results that fall within a single standard deviation of the geo-
metric mean. Are the results compatible with a lognormal distribution?

The geometric means are 20.86 for Opteron and 27.12 for Itanium 2. As you
might guess from the SPECRatios, the standard deviation for the Itanium 2 is
much higher—1.93 versus 1.38—indicating that the results will differ more
widely from the mean, and therefore are likely less predictable. The single stan-
dard deviation range is- [27.12 /1.93, 27.12 x 1.93] or [14.06, 52.30] for Ita-
nium 2 and [20.86 / 1.38, 20.86 x 1.38] or [15.12, 28.76] for Opteron. For
Itanium 2, 10 of 14 benchmarks (71%) fall within one standard deviation; for
Opteron, it is 11 of 14 (78%). Thus, both results are quite compatible with a
lognormal distribution.

A

Quantitative Principles of Computer Design

Now that we have seen how to define, measure, and summarize performance,
cost, dependability, and power, we can explore guidelines and principles that are
useful in the design and analysis of computers. This section introduces important
observations about design, as well as two equations to evaluate alternatives.

Take Advantage of Parallelism

Taking advantage of parallelism is one of the most important methods for
improving performance. Every chapter in this book has an example of how
performance is enhanced through the exploitation of parallelism. We give three
brief examples, which are expounded on in later chapters.

Our first example is the use of parallelism at the system level. To improve the
throughput performance on a typical server benchmark, such as SPECWeb or
TPC-C, multiple processors and multiple disks can be used. The workload of
handling requests can then be spread among the processors and disks, resulting in
improved throughput. Being able to expand memory and the number of proces-
sors and disks is called scalability, and it is a valuable asset for servers.

At the level of an individual processor, taking advantage of parallelism
among instructions is critical to achieving high performance. One of the simplest
ways to do this is through pipelining. The basic idea behind pipelining, which is
explained in more detail in Appendix A and is a major focus of Chapter 2, is to
overlap instruction execution to reduce the total time to complete an instruction
sequence. A key insight that allows pipelining to work is that not every instruc-
tion depends on its immediate predecessor, and thus, executing the instructions
completely or partially in parallel may be possible.
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Parallelism can also be exploited at the level of detailed digital design. For
example, set-associative caches use multiple banks of memory that are typically
searched in parallel to find a desired item. Modern ALUs use carry-lookahead,
which uses parallelism to speed the process of computing sums from linear to
logarithmic in the number of bits per operand.

Principle of Locality

Important fundamental observations have come from properties of programs. The
most important program property that we regularly exploit is the principle of
locality: Programs tend to reuse data and instructions they have used recently. A
widely held rule of thumb is that a program spends 90% of its execution time in
only 10% of the code. An implication of locality is that we can predict with rea-
sonable accuracy what instructions and data a program will use in the near future
based on its accesses in the recent past. The principle of locality also applies to
data accesses, though not as strongly as to code accesses.

Two different types of locality have been observed. Temporal locality states
that recently accessed items are likely to be accessed in the near future. Spatial
locality says that items whose addresses are near one another tend to be refer-
enced close together in time. We will see these principles applied in Chapter 5.

Focus on the Common Case

Perhaps the most important and pervasive principle of computer design is to
focus on the common case: In making a design trade-off, favor the frequent
case over the infrequent case. This principle applies when determining how to
spend resources, since the impact of the improvement is higher if the occur-
rence is frequent.

Focusing on the common case works for power as well as for resource alloca-
tion and performance. The instruction fetch and decode unit of a processor may
be used much more frequently than a multiplier, so optimize it first. It works on
dependability as well. If a database server has 50 disks for every processor, as in
the next section, storage dependability will dominate system dependability.

In addition, the frequent case is often simpler and can be done faster than the
infrequent case. For example, when adding two numbers in the processor, we can
expect overflow to be a rare circumstance and can therefore improve performance
by optimizing the more common case of no overflow. This may slow down the
case when overflow occurs, but if that is rare, then overall performance will be
improved by optimizing for the normal case.

We will see many cases of this principle throughout this text. In applying this
simple principle, we have to decide what the frequent case is and how much per-
formance can be improved by making that case faster. A fundamental law, called
Amdahl’s Law, can be used to quantify this principle.
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Amdahl’s Law

The performance gain that can be obtained by improving some portion of a com-
puter can be calculated using Amdahl’s Law. Amdahl’s Law states that the per-
formance improvement to be gained from using some faster mode of execution is
limited by the fraction of the time the faster mode can be used.

Amdahl’s Law defines the speedup that can be gained by using a particular
feature. What is speedup? Suppose that we can make an enhancement to a com-
puter that will improve performance when it is used. Speedup is the ratio

Performance for entire task using the enhancement when possible

Speedup =
Performance for entire task without using the enhancement
Alternatively,
Execution time for entire task without using the enhancement
Speedup =

Execution time for entire task using the enhancement when possible

Speedup tells us how much faster a task will run using the computer with the
enhancement as opposed to the original computer.

Amdahl’s Law gives us a quick way to find the speedup from some enhance-
ment, which depends on two factors:

1. The fraction of the computation time in the original computer that can be
converted to take advantage of the enhancement—For example, if 20
seconds of the execution time of a program that takes 60 seconds in total
can use an enhancement, the fraction is 20/60. This value, which we will call
Fractionephanced, i always less than or equal to 1.

2. The improvement gained by the enhanced execution mode; that is, how much
faster the task would run if the enhanced mode were used for the entire pro-
gram—This value is the time of the original mode over the time of the
enhanced mode. If the enhanced mode takes, say, 2 seconds for a portion of
the program, while it is 5 seconds in the original mode, the improvement is
5/2. We will call this value, which is always greater than 1, Speedupenhanced-

The execution time using the original computer with the enhanced mode will be
the time spent using the unenhanced portion of the computer plus the time spent
using the enhancement:

E . . E . . (1-F . ) Fractionenhanced
xecution time,.,, = Execution timegq X ~ Fraction .0 o) + o———

Speedupenhanced
The overall speedup is the ratio of the execution times:

Execution time ;4 1

Speedupoyeran = on i = i
Execution time Fraction .0 oq

(1 — Fraction ) + ———
enhanced sPeedupenhanced
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Example

Answer

Suppose that we want to enhance the processor used for Web serving. The new
processor is 10 times faster on computation in the Web serving application than
the original processor. Assuming that the original processor is busy with compu-
tation 40% of the time and is waiting for I/O 60% of the time, what is the overall
speedup gained by incorporating the enhancement?

. 1 1
Fractiongpanceq = 0.4, Speedupeynanced = 10, Speedup ey = — 04 063 1.56
06+2: .

.+1—0

Amdahl’s Law expresses the law of diminishing returns: The incremental
improvement in speedup gained by an improvement of just a portion of the com-
putation diminishes as improvements are added. An important corollary of
Amdahl’s Law is that if an enhancement is only usable for a fraction of a task, we
can’t speed up the task by more than the reciprocal of 1 minus that fraction.

A common mistake in applying Amdahl’s Law is to confuse “fraction of time
converted to use an enhancement” and “fraction of time after enhancement is in
use.” If, instead of measuring the time that we could use the enhancement in a
computation, we measure the time after the enhancement is in use, the results
will be incorrect!

Amdahl’s Law can serve as a guide to how much an enhancement will
improve performance and how to distribute resources to improve cost-
performance. The goal, clearly, is to spend resources proportional to where time
is spent. Amdahl’s Law is particularly useful for comparing the overall system
performance of two alternatives, but it can also be applied to compare two pro-
cessor design alternatives, as the following example shows.

Example

Answer

A common transformation required in graphics processors is square root. Imple-
mentations of floating-point (FP) square root vary significantly in performance,
especially among processors designed for graphics. Suppose FP square root
(FPSQR) is responsible for 20% of the execution time of a critical graphics
benchmark. One proposal is to enhance the FPSQR hardware and speed up this
operation by a factor of 10. The other alternative is just to try to make all FP
instructions in the graphics processor run faster by a factor of 1.6; FP instructions
are responsible for half of the execution time for the application. The design team
believes that they can make all FP instructions run 1.6 times faster with the same
effort as required for the fast square root. Compare these two design alternatives.

We can compare these two alternatives by comparing the speedups:

1 1
Speedupppsgr = ——————5 = ~es =1.22
(1-02)+32 0%

1 1

= =1.23
(1-05) +(% 0.8125

Speedupgp =



1.9 Quantitative Principles of Computer Design s 41

Improving the performance of the FP operations overall is slightly better because
of the higher frequency.

Amdahl’s Law is applicable beyond performance. Let’s redo the reliability
example from page 27 after improving the reliability of the power supply via
redundancy from 200,000-hour to 830,000,000-hour MTTF, or 4150X better.

Example

Answer

The calculation of the failure rates of the disk subsystem was

1 1 1 1 1
1,000,000 * 500,000 200,000 * 200,000 | 1,000,000

_10+42+5+5+1 _ 23
~ 1,000,000 hours ~ 1,000,000 hours

Failure ratesymm = 10x

Therefore, the fraction of the failure rate that could be improved is 5 per million
hours out of 23 for the whole system, or 0.22.

The reliability improvement would be

1 1
Improvementpowe, supply pair = ————672— = —'7'§ =1.28
(1-0.22) + m ’

Despite an impressive 4150X improvement in reliability of one module, from the
system’s perspective, the change has a measurable but small benefit.

In the examples above we needed the fraction consumed by the new and
improved version; often it is difficult to measure these times directly. In the next
section, we will see another way of doing such comparisons based on the use of
an equation that decomposes the CPU execution time into three separate compo-
nents. If we know how an alternative affects these three components, we can
determine its overall performance. Furthermore, it is often possible to build simu-
lators that measure these components before the hardware is actually designed.

The Processor Performance Equation

Essentially all computers are constructed using a clock running at a constant rate.
These discrete time events are called ticks, clock ticks, clock periods, clocks,
cycles, or clock cycles. Computer designers refer to the time of a clock period by
its duration (e.g., 1 ns) or by its rate (e.g., | GHz). CPU time for a program can
then be expressed two ways:

CPU time = CPU clock cycles for a program x Clock cycle time
or

CPU clock cycles for a program

CPU time = Clock rate
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In addition to the number of clock cycles needed to execute a program, we
can also count the number of instructions executed—the instruction path length
or instruction count (IC). If we know the number of clock cycles and the instruc-
tion count, we can calculate the average number of clock cycles per instruction
(CPI). Because it is easier to work with, and because we will deal with simple
processors in this chapter, we use CPL. Designers sometimes also use instructions
per clock (IPC), which is the inverse of CPL

CPI is computed as

CPU clock cycles for a program
CPl = -
Instruction count

This processor figure of merit provides insight into different styles of instruction

sets and implementations, and we will use it extensively in the next four chapters.
By transposing instruction count in the above formula, clock cycles can be

defined as IC x CPI. This allows us to use CPI in the execution time formula:

CPU time = Instruction count x Cycles per instruction x Clock cycle time

Expanding the first formula into the units of measurement shows how the pieces
fit together:

Instructions x Clock cycles =~ Seconds _ Seconds

Program ~ Instruction ~ Clock cycle  Program CPU time

As this formula demonstrates, processor performance is dependent upon three
characteristics: clock cycle (or rate), clock cycles per instruction, and instruction
count. Furthermore, CPU time is equally dependent on these three characteris-
tics: A 10% improvement in any one of them leads to a 10% improvement in
CPU time.

Unfortunately, it is difficult to change one parameter in complete isolation
from others because the basic technologies involved in changing each character-
istic are interdependent:

m  Clock cycle time—Hardware technology and organization
m  CPI—Organization and instruction set architecture

m Instruction count—Instruction set architecture and compiler technology

Luckily, many potential performance improvement techniques primarily improve
one component of processor performance with small or predictable impacts on
the other two.

Sometimes it is useful in designing the processor to calculate the number of
total processor clock cycles as

n
CPU clock cycles = ' IC; x CPI;

i=1
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where IC; represents number of times instruction i is executed in a program and
CPI; represents the average number of clocks per instruction for instruction i.
This form can be used to express CPU time as

n
CPU time = [ Y IC; x CPIi) x Clock cycle time

i=1

and overall CPI as

n
Y IC; x CPJ;
el IC,
CPl= =2 —— = 2——.—-—-XCPI-
Instruction count . 4 . Instruction count !

i=

The latter form of the CPI calculation uses each individual CPI; and the fraction
of occurrences of that instruction in a program (i.e., IC; + Instruction count). CPI;
should be measured and not just calculated from a table in the back of a reference
manual since it must include pipeline effects, cache misses, and any other mem-
ory system inefficiencies.

Consider our performance example on page 40, here modified to use mea-
surements of the frequency of the instructions and of the instruction CPI values,
which, in practice, are obtained by simulation or by hardware instrumentation.

Example

Answer

Suppose we have made the following measurements:

Frequency of FP operations = 25%
Average CPI of FP operations = 4.0
Average CPI of other instructions = 1.33
Frequency of FPSQR= 2%
CPI of FPSQR =20
Assume that the two design alternatives are to decrease the CPI of FPSQR to 2 or

to decrease the average CPI of all FP operations to 2.5. Compare these two
design alternatives using the processor performance equation.

First, observe that only the CPI changes; the clock rate and instruction count
remain identical. We start by finding the original CPI with neither enhancement:

CPI n CPI S S
original = 21 P ix(lnstruction count)
i=

(4%x25%) +(1.33x75%) = 2.0

1}

We can compute the CPI for the enhanced FPSQR by subtracting the cycles
saved from the original CPI:
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CPIwith new FPSQR ~ CPIoriginal - 2% x (CPIOId FPSQR — CPIOf new FPSQR only)
=20-2%x%x(20-2) = 1.64

We can compute the CPI for the enhancement of all FP instructions the same way
or by summing the FP and non-FP CPIs. Using the latter gives us

CPL . pp = (75% x 1.33) + (25% x 2.5) = 1.62

Since the CPI of the overall FP enhancement is slightly lower, its performance
will be marginally better. Specifically, the speedup for the overall FP enhance-
ment is

CPU time
CPU time

CPIorigina! = =123

CPIL

original _ IC x Clock cycle x CPIoﬁgiml
IC x Clock cycle x CPIL . gp

Speedup_ .., pp =

new FP

new FP

Happily, we obtained this same speedup using Amdahl’s Law on page 40.

It is often possible to measure the constituent parts of the processor perfor-
mance equation. This is a key advantage of using the processor performance
equation versus Amdahl’s Law in the previous example. In particular, it may be
difficult to measure things such as the fraction of execution time for which a set
of instructions is responsible. In practice, this would probably be computed by
summing the product of the instruction count and the CPI for each of the instruc-
tions in the set. Since the starting point is often individual instruction count and
CPI measurements, the processor performance equation is incredibly useful.

To use the processor performance equation as a design tool, we need to be
able to measure the various factors. For an existing processor, it is easy to obtain
the execution time by measurement, and the clock speed is known. The challenge
lies in discovering the instruction count or the CPI. Most new processors include
counters for both instructions executed and for clock cycles. By periodically
monitoring these counters, it is also possible to attach execution time and instruc-
tion count to segments of the code, which can be helpful to programmers trying
to understand and tune the performance of an application. Often, a designer or
programmer will want to understand performance at a more fine-grained level
than what is available from the hardware counters. For example, they may want
to know why the CPI is what it is. In such cases, simulation techniques like those
used for processors that are being designed are used.

Putting It All Together: Performance and
Price-Performance

In the “Putting It All Together” sections that appear near the end of every chapter,
we show real examples that use the principles in that chapter. In this section, we
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look at measures of performance and price-performance, in desktop systems
using the SPEC benchmark and then in servers using the TPC-C benchmark.

Performance and Price-Performance for Desktop and
Rack-Mountable Systems

Although there are many benchmark suites for desktop systems, a majority of
them are OS or architecture specific. In this section we examine the processor
performance and price-performance of a variety of desktop systems using the
SPEC CPU2000 integer and floating-point suites. As mentioned in Figure 1.14,
SPEC CPU2000 summarizes processor performance using a geometric mean
normalized to a Sun Ultra 5, with larger numbers indicating higher performance.

Figure 1.15 shows the five systems including the processors and price. Each
system was configured with one processor, 1 GB of DDR DRAM (with ECC if
available), approximately 80 GB of disk, and an Ethernet connection. The desk-
top systems come with a fast graphics card and a monitor, while the rack-mount-
able systems do not. The wide variation in price is driven by a number of factors,
including the cost of the processor, software differences (Linux or a Microsoft
OS versus a vendor-specific OS), system expandability, and the commoditization
effect, which we discussed in Section 1.6.

Figure 1.16 shows the performance and the price-performance of these five
systems using SPEC CINT2000base and CFP2000base as the metrics. The figure
also plots price-performance on the right axis, showing CINT or CFP per $1000
of price. Note that in every case, floating-point performance exceeds integer per-
formance relative to the base computer.

Vendor/model Processor Clockrate  L2cache Type Price
Dell Precision Workstation 380 Intel Pentium 4 Xeon 3.8 GHz 2MB Desk $3346
HP ProLiant BL25p AMD Opteron 252 2.6 GHz 1 MB Rack $3099
HP ProLiant ML350 G4 Intel Pentium 4 Xeon 34 GHz 1MB Desk $2907
HP Integrity rx2620-2 Itanium 2 1.6 GHz 3MB Rack $5201
Sun Java Workstation W1100z AMD Opteron 150 2.4 GHz 1MB Desk $2145

Figure 1.15 Five different desktop and rack-mountable systems from three vendors using three different
microprocessors showing the processor, its clock rate, L2 cache size, and the selling price. Figure 1.16 plots
absolute performance and price performance. All these systems are configured with 1 GB of ECC SDRAM and
approximately 80 GB of disk. (If software costs were not included, we added them.) Many factors are responsible
for the wide variation in price despite these common elements. First, the systems offer different levels of expand-
ability (with the Sun Java Workstation being the least expandable, the Dell systems being moderately expandable,
and the HP BL25p blade server being the most expandable). Second, the cost of the processor varies by at least a
factor of 2, with much of the reason for the higher costs being the size of the L2 cache and the larger die. In 2005,
the Opteron sold for about $500 to $800 and Pentium 4 Xeon sold for about $400 to $700, depending on clock
rates and cache size. The Itanium 2 die size is much larger than the others, so it's probably at least twice the cost.
Third, software differences (Linux or a Microsoft OS versus a vendor-specific OS) probably affect the final price.
These prices were as of August 2005.



46 = Chapter One Fundamentals of Computer Design

M SPECint2000base —e— inV/$1k

1 800
M SPECfp2000base  —e— fp/$1k
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Dell Precision HP Proliant HP ProLiant HP Integrity Sun Java
Workstation 380 BL25p ML350 G4 rx2820-2 Workstation W1100z

Figure 1.16 Performance and price-performance for five systems in Figure 1.15
measured using SPEC CINT2000 and CFP2000 as the benchmark. Price-performance
is plotted as CINT2000 and CFP2000 performance per $1000 in system cost. These per-
formance numbers were collected in January 2006 and prices were as of August 2005,
The measurements are available online at www.spec.org.

The Itanium 2-based design has the highest floating-point performance but
also the highest cost, and hence has the lowest performance per thousand dollars,
being off a factor of 1.1-1.6 in floating-point and 1.8-2.5 in integer performance.
While the Dell based on the 3.8 GHz Intel Xeon with a 2 MB L2 cache has the
high performance for CINT and second highest for CFP, it also has a much higher
cost than the Sun product based on the 2.4 GHz AMD Opteron with a 1 MB L2
cache, making the latter the price-performance leader for CINT and CFP.

Performance and Price-Performance for
Transaction-Processing Servers

One of the largest server markets is online transaction processing (OLTP). The
standard industry benchmark for OLTP is TPC-C, which relies on a database sys-
tem to perform queries and updates. Five factors make the performance of TPC-C
particularly interesting. First, TPC-C is a reasonable approximation to a real
OLTP application. Although this is complex and time-consuming, it makes the
results reasonably indicative of real performance for OLTP. Second, TPC-C mea-
sures total system performance, including the hardware, the operating system, the
I/O system, and the database system, making the benchmark more predictive of
real performance. Third, the rules for running the benchmark and reporting exe-
cution time are very complete, resulting in numbers that are more comparable.
Fourth, because of the importance of the benchmark, computer system vendors
devote significant effort to making TPC-C run well. Fifth, vendors are required to
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report both performance and price-performance, enabling us to examine both.
For TPC-C, performance is measured in transactions per minute (TPM), while
price-performance is measured in dollars per TPM.

Figure 1.17 shows the characteristics of 10 systems whose performance or
price-performance is near the top in one measure or the other. Figure 1.18 plots
absolute performance on a log scale and price-performance on a linear scale. The
number of disks is determined by the number of I/Os per second to match the
performance target rather than the storage capacity need to run the benchmark.

The highest-performing system is a 64-node shared-memory multiprocessor
from IBM, costing a whopping $17 million. It is about twice as expensive and
twice as fast as the same model half its size, and almost three times faster than the
third-place cluster from HP. These five computers average 35-50 disks per pro-
cessor and 16-20 GB of DRAM per processor. Chapter 4 discusses the design of
multiprocessor systems, and Chapter 6 and Appendix E describe clusters.

The computers with the best price-performance are all uniprocessors based
on Pentium 4 Xeon processors, although the L2 cache size varies. Notice that
these systems have about three to four times better price-performance than the

Vendor and system Processors Memory Storage Database/OS Price

IBM eServer p5 595 64 IBM POWER 5 64 cards, 6548 disks IBM DB2 UDB 8.2/ $16,669,230
@1.9GHz,36 MBL3 2048 GB 243,236 GB IBM AIX 5L V5.3

IBM eServer p5 595 32 IBM POWER 5 32cards, 3298 disks Orcale 10g EE/ $8,428,470
@19GHz,36 MBL3 1024 GB 112,885 GB IBM AIX SL V5.3

HP Integrity 64 Intel Itanium 2 768 dimms, 2195 disks, Orcale 10g EE/ $6,541,770

1x5670 Cluster @ 1.5GHz, 6 MBL3 768 GB 93,184 GB  Red Hat E Linux AS 3

HP Integrity 64 Intel Itanium 2 512 dimms, 1740 disks, MS SQL Server $5,820,285

Superdome @1.6GHz,9MBL3 1024GB 53,743GB 2005 EE/MS Windows

DE 64b

IBM eServer 32 IBM POWER4+ 4 cards, 1995 disks, IBM DB2 UDB 8.1/ $5,571,349

pSeries 690 @ 1.9GHz, 128MBL3 1024GB 74,098 GB IBM AIX SL V5.2

Dell PowerEdge 2800 1 Intel Xeon 2 dimms, 76 disks, MS SQL Server 2000 WE/ $39,340

@ 3.4 GHz, 2MB L2 25GB 2585 GB MS Windows 2003

Dell PowerEdge 2850 1 Intel Xeon 2 dimms, 76 disks, MS SQL Server 2000 SE/ $40,170
@ 3.4 GHz, IMB 1.2 25GB 1400 GB MS Windows 2003

HP ProLiant ML350 1 Intel Xeon 3 dimms, 34 disks, MS SQL Server 2000 SE/ $27,827
@3.1GHz,05\MBL2 25GB 696 GB MS Windows 2003 SE

HP ProLiant ML350 1 Intel Xeon 4dimms, 35disks, IBM DB2 UDB EE V8.1/ $29,990
@ 3.1 GHz, 0.5MB L2 4GB 692 GB SUSE Linux ES 9

HP ProLiant ML350 1 Intel Xeon 4 dimms, 35disks, IBM DB2UDB EE V8.1/ $30,600
@28GHz,0.5SMBL2 3.25GB 692 GB MS Windows 2003 SE

Figure 1.17 The characteristics of 10 OLTP systems, using TPC-C as the benchmark, with either high total perfor-
mance (top half of the table, measured in transactions per minute) or superior price-performance (bottom half
of the table, measured in U.S. dollars per transactions per minute). Figure 1.18 plots absolute performance and

price performance, and Figure 1.19 splits the price between processors, memory, storage, and software.
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Figure 1.18 Performance and price-performance for the 10 systems in Figure 1.17
using TPC-C as the benchmark. Price-performance is plotted as TPM per $1000 in sys-
tem cost, although the conventional TPC-C measure is $/TPM (715 TPM/$1000 = $1.40
$/TPM). These performance numbers and prices were as of July 2005. The measure-
ments are available online at www.tpc.org.

high-performance systems. Although these five computers also average 35-50
disks per processor, they only use 2.5-3 GB of DRAM per processor. It is hard to
tell whether this is the best choice or whether it simply reflects the 32-bit address
space of these less expensive PC servers. Since doubling memory would only add
about 4% to their price, it is likely the latter reason.

Fallacies and Pitfalls

The purpose of this section, which will be found in every chapter, is to explain
some commonly held misbeliefs or misconceptions that you should avoid. We
call such misbeliefs fallacies. When discussing a fallacy, we try to give a counter-
example. We also discuss pitfalls—easily made mistakes. Often pitfalls are gen-
eralizations of principles that are true in a limited context. The purpose of these
sections is to help you avoid making these errors in computers that you design.

Falling prey to Amdahl’s Law.

Virtually every practicing computer architect knows Amdahl’s Law. Despite this,
we almost all occasionally expend tremendous effort optimizing some feature
before we measure its usage. Only when the overall speedup is disappointing do
we recall that we should have measured first before we spent so much effort
enhancing it!
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A single point of failure.

The calculations of reliability improvement using Amdahl’s Law on page 41
show that dependability is no stronger than the weakest link in a chain. No matter
how much more dependable we make the power supplies, as we did in our exam-
ple, the single fan will limit the reliability of the disk subsystem. This Amdahl’s
Law observation led to a rule of thumb for fault-tolerant systems to make sure
that every component was redundant so that no single component failure could
bring down the whole system.

The cost of the processor dominates the cost of the system.

Computer science is processor centric, perhaps because processors seem more
intellectually interesting than memories or disks and perhaps because algorithms
are traditionally measured in number of processor operations. This fascination
leads us to think that processor utilization is the most important figure of merit.
Indeed, the high-performance computing community often evaluates algorithms
and architectures by what fraction of peak processor performance is achieved.
This would make sense if most of the cost were in the processors.

Figure 1.19 shows the breakdown of costs for the computers in Figure 1.17
into the processor (including the cabinets, power supplies, and so on), DRAM

Processor +
cabinetry Memory Storage Software
IBM eServer p5 595 28% 16%  51% 6%
IBM eServer p5 595 13% 31% 52% 4%
HP Integrity rx5670 Cluster 11% 22% 35% 33%
HP Integrity Superdome 33% 32% 15% 20%
IBM eServer pSeries 690 21% 24% 48% 7%
Median of high-performance computers 21% 24% 48% 7%
Dell PowerEdge 2800 6% 3% 80% 11%
Dell PowerEdge 2850 7% 3% 76% 14%
HP ProLiant ML350 5% 4% 70% 21%
HP ProLiant ML350 9% 8% 65% 19%
HP ProLiant ML350 8% 6% 65% 21%
Median of price-performance computers 7% 4% 70% 19%

Figure 1.19 Cost of purchase split between processor, memory, storage, and soft-
ware for the top computers running the TPC-C benchmark in Figure 1.17.Memory is
just the cost of the DRAM modules, so all the power and cooling for the computer is
credited to the processor. TPC-C includes the cost of the clients to drive the TPC-C
benchmark and the three-year cost of maintenance, which are not included here. Main-
tenance would add about 10% to the numbers here, with differences in software main-
tenance costs making the range be 5% to 22%. Including client hardware would add
about 2% to the price of the high-performance servers and 7% to the PC servers.
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Fallacy

Fallacy

memory, disk storage, and software. Even giving the processor category the
credit for the sheet metal, power supplies, and cooling, it’s only about 20% of the
costs for the large-scale servers and less than 10% of the costs for the PC servers.

Benchmarks remain valid indefinitely.

Several factors influence the usefulness of a benchmark as a predictor of real per-
formance, and some change over time. A big factor influencing the usefulness of
a benchmark is its ability to resist “cracking,” also known as “benchmark engi-
neering” or “benchmarksmanship.” Once a benchmark becomes standardized and
popular, there is tremendous pressure to improve performance by targeted opti-
mizations or by aggressive interpretation of the rules for running the benchmark.
Small kernels or programs that spend their time in a very small number of lines of
code are particularly vulnerable.

For example, despite the best intentions, the initial SPEC89 benchmark suite
included a small kernel, called matrix300, which consisted of eight different 300
x 300 matrix multiplications. In this kernel, 99% of the execution time was in a
single line (see SPEC [1989]). When an IBM compiler optimized this inner loop
(using an idea called blocking, discussed in Chapter 5), performance improved
by a factor of 9 over a prior version of the compiler! This benchmark tested com-
piler tuning and was not, of course, a gdod indication of overall performance, nor
of the typical value of this particular optimization.

Even after the elimination of this benchmark, vendors found methods to tune
the performance of others by the use of different compilers or preprocessors, as
well as benchmark-specific flags. Although the baseline performance measure-
ments require the use of one set of flags for all benchmarks, the tuned or opti-
mized performance does not. In fact, benchmark-specific flags are allowed, even
if they are illegal in general and could lead to incorrect compilation!

Over a long period, these changes may make even a well-chosen benchmark
obsolete; Gece is the lone survivor from SPEC89. Figure 1.13 on page 31 lists
the status of all 70 benchmarks from the various SPEC releases. Amazingly,
almost 70% of all programs from SPEC2000 or earlier were dropped from the
next release.

The rated mean time to failure of disks is 1,200,000 hours or almost 140 years, so
disks practically never fail.

The current marketing practices of disk manufacturers can mislead users. How is
such an MTTF calculated? Early in the process, manufacturers will put thousands
of disks in a room, run them for a few months, and count the number that fail.
They compute MTTF as the total number of hours that the disks worked cumula-
tively divided by the number that failed.

One problem is that this number far exceeds the lifetime of a disk, which is
commonly assumed to be 5 years or 43,800 hours. For this large MTTF to make
some sense, disk manufacturers argue that the model corresponds to a user who
buys a disk, and then keeps replacing the disk every 5 years—the planned
lifetime of the disk. The claim is that if many customers (and their great-
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grandchildren) did this for the next century, on average they would replace a disk
27 times before a failure, or about 140 years.

A more useful measure would be percentage of disks that fail. Assume 1000
disks with a 1,000,000-hour MTTF and that the disks are used 24 hours a day. If
you replaced failed disks with a new one having the same reliability characteris-
tics, the number that would fail in a year (8760 hours) is

Number of disks x Time period _ 1000 disks x 8760 hours/drive _

Failed disks = MTTF = 1,000,000 hours/faiture

Stated alternatively, 0.9% would fail per year, or 4.4% over a 5-year lifetime.

Moreover, those high numbers are quoted assuming limited ranges of temper-
ature and vibration; if they are exceeded, then all bets are off. A recent survey of
disk drives in real environments [Gray and van Ingen 2005] claims about 3-6%
of SCSI drives fail per year, or an MTTF of about 150,000—-300,000 hours, and
about 3-7% of ATA drives fail per year, or an MTTF of about 125,000-300,000
hours. The quoted MTTF of ATA disks is usually 500,000-600,000 hours. Hence,
according to this report, real-world MTTF is about 2—4 times worse than manu-
facturer’s MTTF for ATA disks and 4-8 times worse for SCSI disks.

Peak performance tracks observed performance.

The only universally true definition of peak performance is “the performance
level a computer is guaranteed not to exceed.” Figure 1.20 shows the percentage
of peak performance for four programs on four multiprocessors. It varies from
5% to 58%. Since the gap is so large and can vary significantly by benchmark,
peak performance is not generally useful in predicting observed performance.

Fault detection can lower availability.

This apparently ironic pitfall is because computer hardware has a fair amount of
state that may not always be critical to proper operation. For example, it is not
fatal if an error occurs in a branch predictor, as only performance may suffer.

In processors that try to aggressively exploit instruction-level parallelism, not
all the operations are needed for correct execution of the program. Mukherjee et
al. [2003] found that less than 30% of the operations were potentially on the crit-
ical path for the SPEC2000 benchmarks running on an Itanium 2.

The same observation is true about programs. If a register is “dead” in a pro-
gram—that is, the program will write it before it is read again—then errors do not
matter. If you were to crash the program upon detection of a transient fault in a
dead register, it would lower availability unnecessarily.

Sun Microsystems lived this pitfall in 2000 with an L2 cache that included
parity, but not error correction, in its Sun E3000 to Sun E10000 systems. The
SRAMs they used to build the caches had intermittent faults, which parity
detected. If the data in the cache was not modified, the processor simply reread
the data from the cache. Since the designers did not protect the cache with ECC,
the operating system had no choice but report an error to dirty data and crash the
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Figure 1.20 Percentage of peak performance for four programs on four multipro-
cessors scaled to 64 processors.The Earth Simulator and X1 are vector processors. (See
Appendix F) Not only did they deliver a higher fraction of peak performance, they had
the highest peak performance and the lowest clock rates. Except for the Paratec pro-
gram, the Power 4 and Itanium 2 systems deliver between 5% and 10% of their peak.
From Oliker et al.[2004].

program. Field engineers found no problems on inspection in more than 90% of
the cases.

To reduce the frequency of such errors, Sun modified the Solaris operating
system to “scrub” the cache by having a process that proactively writes dirty data
to memory. Since the processor chips did not have enough pins to add ECC, the
only hardware option for dirty data was to duplicate the external cache, using the
copy without the parity error to correct the error.

The pitfall is in detecting faults without providing a mechanism to correct
them. Sun is unlikely to ship another computer without ECC on external caches.

Concluding Remarks

This chapter has introduced a number of concepts that we will expand upon as we
go through this book.

In Chapters 2 and 3, we look at instruction-level parallelism (ILP), of which
pipelining is the simplest and most common form. Exploiting ILP is one of the
most important techniques for building high-speed uniprocessors. The presence
of two chapters reflects the fact that there are several approaches to exploiting
ILP and that it is an important and mature technology. Chapter 2 begins with an
extensive discussion of basic concepts that will prepare you for the wide range of
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ideas examined in both chapters. Chapter 2 uses examples that span about 35
years, drawing from one of the first supercomputers (IBM 360/91) to the fastest
processors in the market in 2006. It emphasizes what is called the dynamic or run
time approach to exploiting ILP. Chapter 3 focuses on limits and extensions to
the ILP ideas presented in Chapter 2, including multithreading to get more from
an out-of-order organization. Appendix A is introductory material on pipelining
for readers without much experience and background in pipelining. (We expect it
to be review for many readers, including those of our introductory text, Computer
Organization and Design: The Hardware/Software Interface.)

Chapter 4 focuses on the issue of achieving higher performance using multi-
ple processors, or multiprocessors. Instead of using parallelism to overlap indi-
vidual instructions, multiprocessing uses parallelism to allow multiple instruction
streams to be executed simultaneously on different processors. Qur focus is on
the dominant form of multiprocessors, shared-memory multiprocessors, though
we introduce other types as well and discuss the broad issues that arise in any
multiprocessor. Here again, we explore a variety of techniques, focusing on the
important ideas first introduced in the 1980s and 1990s.

In Chapter 5, we turn to the all-important area of memory system design. We
will examine a wide range of techniques that conspire to make memory look
infinitely large while still being as fast as possible. As in Chapters 2 through 4,
we -vill see that hardware-software cooperation has become a key to high-
performance memory systems, just as it has to high-performance pipelines. This
chapter also covers virtual machines. Appendix C is introductory material on
caches for readers without much experience and background in them.

In Chapter 6, we move away from a processor-centric view and discuss issues
in storage systems. We apply a similar quantitative approach, but one based on
observations of system behavior and using an end-to-end approach to perfor-
mance analysis. It addresses the important issue of how to efficiently store and
retrieve data using primarily lower-cost magnetic storage technologies. Such
technologies offer better cost per bit by a factor of 50-100 over DRAM. In Chap-
ter 6, our focus is on examining the performance of disk storage systems for typ-
ical /O-intensive workloads, like the OLTP benchmarks we saw in this chapter.
We extensively explore advanced topics in RAID-based systems, which use
redundant disks to achieve both high performance and high availability. Finally,
the chapter introduces queing theory, which gives a basis for trading off utiliza-
tion and latency.

This book comes with a plethora of material on the companion CD, both to
lower cost and to introduce readers to a variety of advanced topics. Figure 1.21
shows them all. Appendices A, B, and C, which appear in the book, will be
review for many readers. Appendix D takes the embedded computing perspective
on the ideas of each of the chapters and early appendices. Appendix E explores
the topic of system interconnect broadly, including wide area and system area
networks used to allow computers to communicate. It also describes clusters,
which are growing in importance due to their suitability and efficiency for data-
base and Web server applications.



54 wu Chapter One Fundamentals of Computer Design

Appendix Title

Pipelining: Basic and Intermediate Concepts

Instruction Set Principles and Examples

Review of Memory Hierarchies

Embedded Systems (CD)

Interconnection Networks (CD)

Vector Processors (CD)

Hardware and Software for VLIW and EPIC (CD)
Large-Scale Multiprocessors and Scientific Applications (CD)
Computer Arithmetic (CD)

Survey of Instruction Set Architectures (CD)

Historical Perspectives and References (CD)
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Solutions to Case Study Exercises (Online)

Figure 1.21 List of appendices.

Appendix F explores vector processors, which have become more popular
since the last edition due in part to the NEC Global Climate Simulator being the
world’s fastest computer for several years. Appendix G reviews VLIW hardware
and software, which in contrast, are less popular than when EPIC appeared on the
scene just before the last edition. Appendix H describes large-scale multiproces-
sors for use in high performance computing. Appendix I is the only appendix that
remains from the first edition, and it covers computer arithmetic. Appendix J is a
survey of instruction architectures, including the 80x86, the IBM 360, the VAX,
and many RISC architectures, including ARM, MIPS, Power, and SPARC. We
describe Appendix K below. Appendix L has solutions to Case Study exercises.

Historical Perspectives and References

Appendix K on the companion CD includes historical perspectives on the key
ideas presented in each of the chapters in this text. These historical perspective
sections allow us to trace the development of an idea through a series of
machines or describe significant projects. If you’re interested in examining the
initial development of an idea or machine or interested in further reading, refer-
ences are provided at the end of each history. For this chapter, see Section K.2,
The Early Development of Computers, for a discussion on the early development
of digital computers and performance measurement methodologies.

As you read the historical material, you’ll soon come to realize that one of the
important benefits of the youth of computing, compared to many other engineer-
ing fields, is that many of the pioneers are still alive—we can learn the history by
simply asking them!
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Case Studies with Exercises by Diana Franklin

Case Study 1: Chip Fabrication Cost

Concepts illustrated by this case study

s Fabrication Cost
m Fabrication Yield
m Defect Tolerance through Redundancy

There are many factors involved in the price of a computer chip. New, smaller
technology gives a boost in performance and a drop in required chip area. In the
smaller technology, one can either keep the small area or place more hardware on
the chip in order to get more functionality. In this case study, we explore how dif-
ferent design decisions involving fabrication technology, area, and redundancy
affect the cost of chips.

[10/10/Discussion] <1.5, 1.5> Figure 1.22 gives the relevant chip statistics that
influence the cost of several current chips. In the next few exercises, you will be
exploring the trade-offs involved between the AMD Opteron, a single-chip pro-
cessor, and the Sun Niagara, an 8-core chip.

a. {10] <1.5> What is the yield for the AMD Opteron?
b. [10] <1.5> What is the yield for an 8-core Sun Niagara processor?

c. [Discussion] <1.4, 1.6> Why does the Sun Niagara have a worse yield than
the AMD Opteron, even though they have the same defect rate?

[20/20/20/20/20] <1.7> You are trying to figure out whether to build a new fabri-
cation facility for your IBM Power5 chips. It costs $1 billion to build a new fabri-
cation facility. The benefit of the new fabrication is that you predict that you will
be able to sell 3 times as many chips at 2 times the price of the old chips. The new
chip will have an area of 186 mm?, with a defect rate of .7 defects per cm?.
Assume the wafer has a diameter of 300 mm. Assume it costs $500 to fabricate a
wafer in either technology. You were previously selling the chips for 40% more

than their cost.

Diesize Estimated defect Manufacturing Transistors

Chip (mm?) rate (per cm?) size (nm) (millions)
IBM Power5 389 .30 130 276
Sun Niagara 380 75 90 279
AMD Opteron 199 75 90 233

Figure 1.22 Manufacturing cost factors for several modern processors. o = 4.
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P oo g

[20] <1.5> What is the cost of the old Power5 chip?

[20] <1.5> What is the cost of the new Power5 chip?
[20] <1.5> What was the profit on each old Power5 chip?
[20] <1.5> What is the profit on each new Power5 chip?

[20] <1.5> If you sold 500,000 old Power5 chips per month, how long will it
take to recoup the costs of the new fabrication facility?

[20/20/10/10/20] <1.7> Your colleague at Sun suggests that, since the yield is so
poor, it might make sense to sell two sets of chips, one with 8 working processors
and one with 6 working processors. We will solve this exercise by viewing the
yield as a probability of no defects occurring in a certain area given the defect
rate. For the Niagara, calculate probabilities based on each Niagara core sepa-
rately (this may not be entirely accurate, since the yield equation is based on
empirical evidence rather than a mathematical calculation relating the probabili-
ties of finding errors in different portions of the chip).

a.

[20] <1.7> Using the yield equation for the defect rate above, what is the
probability that a defect will occur on a single Niagara core (assuming the
chip is divided evenly between the cores) in an 8-core chip?

[20] <1.7> What is the probability that a defect will occur on one or two cores
(but not more than that)?

[10] <1.7> What is the probability that a defect will occur on none of the
cores?

[10] <1.7> Given your answers to parts (b) and (c), what is the number of 6-
core chips you will sell for every 8-core chip?

[20] <1.7> If you sell your 8-core chips for $150 each, the 6-core chips for
$100 each, the cost per die sold is $80, your research and development budget
was $200 million, and testing itself costs $1.50 per chip, how many proces-
sors would you need to sell in order to recoup costs?

Case Study 2: Power Consumption in Computer Systems

Concepts illustrated by this case study

Amdahl’s Law
Redundancy
MTTF

Power Consumption

Power consumption in modern systems is dependent on a variety of factors,
including the chip clock frequency, efficiency, the disk drive speed, disk drive uti-
lization, and DRAM. The following exercises explore the impact on power that
different design decisions and/or use scenarios have.
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Component

type Product Performance Power

Processor Sun Niagara 8-core 1.2 GHz 72-79W peak
Intel Pentium 4 2GHz 48.9-66W

DRAM Kingston X64C3AD2 1 GB 184-pin 37w
Kingston D2N3 1 GB 240-pin 2.3W

Hard drive = DiamondMax 16 5400 rpm 7.0W read/seek, 2.9 W idle
DiamondMax Plus 9 7200 rpm 7.9W read/seek, 4.0 W idle

Figure 1.23 Power consumption of several computer components.

[20/10/20] <1.6> Figure 1.23 presents the power consumption of several com-
puter system components. In this exercise, we will explore how the hard drive
affects power consumption for the system.

a.

[20] <1.6> Assuming the maximum load for each component, and a power
supply efficiency of 70%, what wattage must the server’s power supply
deliver to a system with a Sun Niagara 8-core chip, 2 GB 184-pin Kingston
DRAM, and two 7200 rpm hard drives?

[10] <1.6> How much power will the 7200 rpm disk drive consume if it is
idle rougly 40% of the time?

[20] <1.6> Assume that rpm is the only factor in how long a disk is not idle
(which is an oversimplification of disk performance). In other words, assume
that for the same set of requests, a 5400 rpm disk will require twice as much
time to read data as a 10,800 rpm disk. What percentage of the time would the
5400 rpm disk drive be idle to perform the same transactions as in part (b)?

[10/10/20] <1.6, 1.7> One critical factor in powering a server farm is cooling. If
heat is not removed from the computer efficiently, the fans will blow hot air back
onto the computer, not cold air. We will look at how different design decisions
affect the necessary cooling, and thus the price, of a system. Use Figure 1.23 for
your power calculations.

a.

[10] <1.6> A cooling door for a rack costs $4000 and dissipates 14 KW (into
the room; additional cost is required to get it out of the room). How many
servers with a Sun Niagara 8-core processor, 1 GB 240-pin DRAM, and a
single 5400 rpm hard drive can you cool with one cooling door?

[10] <1.6, 1.8> You are considering providing fault tolerance for your hard
drive. RAID 1 doubles the number of disks (see Chapter 6). Now how many
systems can you place on a single rack with a single cooler?

[20] <1.8> In a single rack, the MTTF of each processor is 4500 hours, of the

hard drive is 9 million hours, and of the power supply is 30K hours. For a
rack with 8 processors, what is the MTTF for the rack?
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1.6

1.7

Sun Fire T2000 IBM x346
Power (watts) 298 438
SPEC;jbb (op/s) 63,378 39,985
Power (watts) 330 438
SPECWeb (composite) 14,001 4,348

Figure 1.24 Sun power / performance comparison as selectively reported by Sun.

[10/10/Discussion] <1.2, 1.9> Figure 1.24 gives a comparison of power and per-
formance for several benchmarks comparing two servers: Sun Fire T2000 (which
uses Niagara) and IBM x346 (using Intel Xeon processors).

a.

[10] <1.9> Calculate the performance/power ratio for each processor on each
benchmark.

[10] <1.9> If power is your main concern, which would you choose?

[Discussion] <1.2> For the database benchmarks, the cheaper the system, the
lower cost per database operation the system is. This is counterintuitive:
larger systems have more throughput, so one might think that buying a larger
system would be a larger absolute cost, but lower per operation cost. Since
this is true, why do any larger server farms buy expensive servers? (Hint:
Look at exercise 1.4 for some reasons.)

[10/20/20/20] <1.7, 1.10> Your company’s internal studies show that a single-
core system is sufficient for the demand on your processing power. You are
exploring, however, whether you could save power by using two cores.

a.

b.

[10] <1.10> Assume your application is 100% parallelizable. By how much
could you decrease the frequency and get the same performance?

[20] <1.7> Assume that the voltage may be decreased linearly with the fre-
quency. Using the equation in Section 1.5, how much dynamic power would
the dual-core system require as compared to the single-core system?

[20] <1.7, 1.10> Now assume the voltage may not decrease below 30% of the
original voltage. This voltage is referred to as the “voltage floor,” and any
voltage lower than that will lose the state. What percent of parallelization
gives you a voltage at the voltage floor?

[20] <1.7, 1.10> Using the equation in Section 1.5, how much dynamic
power would the dual-core system require from part (a) compared to the
single-core system when taking into account the voltage floor?
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Case Study 3: The Cost of Reliability (and Failure) in Web
Servers

Concepts illustrated by this case study

s TPCC
s Reliability of Web Servers
s MTTF

This set of exercises deals with the cost of not having reliable Web servers. The
data is in two sets: one gives various statistics for Gap.com, which was down for
maintenance for two weeks in 2005 [AP 2005]. The other is for Amazon.com,
which was not down, but has better statistics on high-load sales days. The exer-
cises combine the two data sets and require estimating the economic cost to the
shutdown.

[10/10/20/20] <1.2, 1.9> On August 24, 2005, three Web sites managed by the
Gap—Gap.com, OldNavy.com, and BananaRepublic.com—were taken down for
improvements [AP 2005]. These sites were virtually inaccessible for the next two
weeks. Using the statistics in Figure 1.25, answer the following questions, which
are based in part on hypothetical assumptions.

a. [10] <1.2> In the third quarter of 2005, the Gap’s revenue was $3.9 billion
[Gap 2005]. The Web site returned live on September 7, 2005 [Internet
Retailer 2005]. Assume that online sales total $1.4 million per day, and that
everything else remains constant. What would the Gap’s estimated revenue be
third quarter 20057

b. [10] <1.2> If this downtime occurred in the fourth quarter, what would you
estimate the cost of the downtime to be?

Company Time period Amount Type
Gap 3rd qtr 2004 $4 billion Sales
4th qtr 2004 $4.9 billion Sales
3rd qtr 2005 $3.9 billion Sales
4th qtr 2005 $4.8 billion Sales
3rd qtr 2004 $107 million Online sales
3rd gtr 2005 $106 million Online sales
Amazon 3rd qtr 2005 $1.86 billion Sales
4th qtr 2005 $2.98 billion Sales
4th qtr 2005 108 million Items sold
Dec 12, 2005 3.6 million Items sold

Figure 1.25 Statistics on sales for Gap and Amazon. Data compiled from AP [2005],
Internet Retailer [2005], Gamasutra [2005], Seattle Pl [2005], MSN Money [2005], Gap
{2005], and Gap [2006].
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1.10

¢. [20] <1.2> When the site returned, the number of users allowed to visit the
site at one time was limited. Imagine that it was limited to 50% of the cus-
tomers who wanted to access the site. Assume that each server costs $7500 to
purchase and set up. How many servers, per day, could they purchase and
install with the money they are losing in sales?

d. [20] <1.2, 1.9> Gap.com had 2.6 million visitors in July 2004 [AP 2005]. On
average, a user views 8.4 pages per day on Gap.com. Assume that the high-
end servers at Gap.com are running SQLServer software, with a TPCC
benchmark estimated cost of $5.38 per transaction. How much would it cost
for them to support their online traffic at Gap.com.?

[10/10] <1.8> The main reliability measure is MTTF. We will now look at differ-
ent systems and how design decisions affect their reliability. Refer to Figure 1.25
for company statistics.

a. [10] <1.8> We have a single processor with an FIT of 100. What is the MTTF
for this system?

b. [10] <1.8> If it takes 1 day to get the system running again, what is the avail-
ability of the system?

[20] <1.8> Imagine that the government, to cut costs, is going to build a super-
computer out of the cheap processor system in Exercise 1.9 rather than a special-
purpose reliable system. What is the MTTF for a system with 1000 processors?
Assume that if one fails, they all fail.

[20/20] <1.2, 1.8> In a server farm such as that used by Amazon or the Gap, a
single failure does not cause the whole system to crash. Instead, it will reduce the
number of requests that can be satisfied at any one time.

a. [20] <1.8> If a company has 10,000 computers, and it experiences cata-
strophic failure only if 1/3 of the computers fail, what is the MTTF for the
system?

b. [20] <1.2, 1.8> If it costs an extra $1000, per computer, to double the MTTF,
would this be a good business decision? Show your work.

Case Study 4: Performance

Concepts illustrated by this case study

m  Arithmetic Mean

s Geometric Mean

m Parallelism

s Amdahl’s Law

m  Weighted Averages
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In this set of exercises, you are to make sense of Figure 1.26, which presents the
performance of selected processors and a fictional one (Processor X), as reported
by www.tomshardware.com. For each system, two benchmarks were run. One
benchmark exercised the memory hierarchy, giving an indication of the speed of
the memory for that system. The other benchmark, Dhrystone, is a CPU-intensive
benchmark that does not exercise the memory system. Both benchmarks are dis-
played in order to distill the effects that different design decisions have on mem-
ory and CPU performance.

[10/10/Discussion/10/20/Discussion] <1.7> Make the following calculations on
the raw data in order to explore how different measures color the conclusions one
can make. (Doing these exercises will be much easier using a spreadsheet.)

a. [10] <1.8> Create a table similar to that shown in Figure 1.26, except express
the results as normalized to the Pentium D for each benchmark.

b. [10] <1.9> Calculate the arithmetic mean of the performance of each proces-
sor. Use both the original performance and your normalized performance cal-
culated in part (a).

¢. [Discussion] <1.9> Given your answer from part (b), can you draw any con-
flicting conclusions about the relative performance of the different proces-
sors?

d. [10] <1.9> Calculate the geometric mean of the normalized performance of
the dual processors and the geometric mean of the normalized performance
of the single processors for the Dhrystone benchmark.

e. [20] <1.9> Plot a 2D scatter plot with the x-axis being Dhrystone and the y-
axis being the memory benchmark.

f. [Discussion] <1.9> Given your plot in part (e), in what area does a dual-
processor gain in performance? Explain, given your knowledge of parallel
processing and architecture, why these results are as they are.

Clock frequency Memory Dhrystone
Chip # of cores (MHz) performance  performance
Athlon 64 X2 4800+ 2 2,400 3,423 20,718
Pentium EE 840 2 2,200 3,228 18,893
Pentium D 820 2 3,000 3,000 15,220
Athlon 64 X2 3800+ 2 3,200 2,941 17,129
Pentium 4 1 2,800 2,731 7,621
Athlon 64 3000+ 1 1,800 2,953 7,628
Pentium 4 570 1 2,800 3,501 11,210
Processor X 1 3,000 7,000 5,000

Figure 1.26 Performance of several processors on two benchmarks.
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[10/10/20] <1.9> Imagine that your company is trying to decide between a
single-processor system and a dual-processor system. Figure 1.26 gives the per-
formance on two sets of benchmarks—a memory benchmark and a processor
benchmark. You know that your application will spend 40% of its time on
memory-centric computations, and 60% of its time on processor-centric compu-
tations.

a.
b.

[10] <1.9> Calculate the weighted execution time of the benchmarks.

[10] <1.9> How much speedup do you anticipate getting if you move from
using a Pentium 4 570 to an Athlon 64 X2 4800+ on a CPU-intensive applica-
tion suite?

{20] <1.9> At what ratio of memory to processor computation would the per-
formance of the Pentium 4 570 be equal to the Pentium D 8207

[10/10/20/20] <1.10> Your company has just bought a new dual Pentium proces-
sor, and you have been tasked with optimizing your software for this processor.
You will run two applications on this dual Pentium, but the resource requirements
are not equal. The first application needs 80% of the resources, and the other only
20% of the resources.

a.

[10] <1.10> Given that 40% of the first application is parallelizable, how
much speedup would you achieve with that application if run in isolation?

[10] <1.10> Given that 99% of the second application is parallelizable, how
much speedup would this application observe if run in isolation?

[20] <1.10> Given that 40% of the first application is parallelizable, how
much overall system speedup would you observe if you parallelized it?

[20] <1.10> Given that 99% of the second application is parallelizable, how
much overall system speedup would you get?
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